G protein-coupled bile acid receptor
GPBAR1 | |||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||||||||||||||||||||||||||||||||||||||||||||
Aliases | GPBAR1, BG37, GPCR19, GPR131, M-BAR, TGR5, G protein-coupled bile acid receptor, G protein-coupled bile acid receptor 1 | ||||||||||||||||||||||||||||||||||||||||||||||||||
External IDs | OMIM: 610147; MGI: 2653863; HomoloGene: 18125; GeneCards: GPBAR1; OMA:GPBAR1 - orthologs | ||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Wikidata | |||||||||||||||||||||||||||||||||||||||||||||||||||
|
The G protein-coupled bile acid receptor 1 (GPBAR1) also known as G-protein coupled receptor 19 (GPCR19), membrane-type receptor for bile acids (M-BAR) or Takeda G protein-coupled receptor 5 (TGR5) is a protein that in humans is encoded by the GPBAR1 gene.[5][6] Activated by bile acids, these receptors play a crucial role in metabolic regulation, including insulin secretion and energy balance, and are found in the gastrointestinal tract as well as other tissues throughout the body.
History
TGR5 receptors were first discovered by Takaharu Maruyama in 2002.[7] It was the first membrane bound G protein coupled receptor that was discovered for faster bile acid signaling.[8] Initially, up until the late 90's, bile acids were known only for its metabolic function of emulsifying fats and keeping cholesterol homeostasis. It wasn't until 1999 when researchers began exploring into its role as a hormone and signaling molecule with the discovery of the nuclear bile acid receptors, Farnesoid X Receptors (FXR).[9]
Location
TGR5 receptors are primarily located in gastrointestinal tracts where bile acid functions are most prevalent.[10] They can also be found throughout the body, including the nervous system, immune system, and various muscle groups, aiding in the tasks that are relevant to their respective locations.[11]
Function

The primary function of the TGR5 receptor is for the binding of bile acid to elicit second messenger systems in the metabolic role of bile acids.[12] It is also a receptor for other agonists, including activating various other pathways responsible for responses like inflammation.[13]
TGR5 receptors are a member of the G protein-coupled receptor (GPCR) superfamily. As mentioned, this protein functions as a cell surface receptor for bile acids. Treatment of cells expressing this GPCR with bile acids induces the production of intracellular cAMP, activation of a MAP kinase signaling pathway, and internalization of the receptor. The receptor is implicated in the suppression of macrophage functions and regulation of energy homeostasis by bile acids.[14]
One effect of this receptor is to activate deiodinases which convert the prohormone thyroxine (T4) to the active hormone triiodothyronine (T3). T3 in turn activates the thyroid hormone receptor which increases metabolic rate.[15][16]
Bile Acid Effects on TGR5
Bile acid binds to the TGR5 receptor which increases the secretion of GLP-1.[17][18] GLP-1 increases glucose-induced insulin secretion, satiety, and pancreatic beta cell production (responsible for insulin secretion).[19] GLP-1 is also used in medications to treat type 2 diabetes.[20]
GLP-1 undergoes heightened production through 2 pathways. The first pathway is the activation of Adenylyl cyclase and cAMP which begins a secondary messenger cascade to release GLP-1.[21][22] The second pathway entails the increase in mitochondrial activity in response to nutrients like glucose and fatty acids which causes an increase in the ATP to ADP ratio.[23] This leads to the inactivation of ATP-sensitive potassium channels that causes the cell membrane to depolarize.[24][25] This depolarization causes an increase in voltage-gated calcium channel activity, sending a flood of calcium ions which triggers a cascade of events leading to increased GLP-1 secretion.[26]
Extraintestinal Activation of TGR5 Receptors by Bile Acids
Bile acid's ability to act as an antagonist for TGR5 receptors located outside of the gastrointestinal tract means it has the ability to escape the tract and travel to these various regions. Primary bile acids are synthesized by hepatocytes in the liver[27] and get conjugated with Taurine or glycine before they are stored in the gall bladder for stimulated secretion.[28] Upon the presence of fats and proteins in the duodenum from the diet,[29] these primary bile acids get secreted into the intestine where they are converted into secondary bile acids.[30] 95% of these bile acids get reabsorbed into the liver for recirculation,[31] of which 10% escapes this enterohepatic circulation and enters the systemic circulation.[32] It is through their presence in the serum that they are able to get to various other organs where transporters and channels[33] located at their membranes and barriers allow them to access the TGR5 receptors.
References
- ^ a b c GRCh38: Ensembl release 89: ENSG00000179921 – Ensembl, May 2017
- ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000064272 – Ensembl, May 2017
- ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- ^ Kawamata Y, Fujii R, Hosoya M, Harada M, Yoshida H, Miwa M, et al. (March 2003). "A G protein-coupled receptor responsive to bile acids". The Journal of Biological Chemistry. 278 (11): 9435–9440. doi:10.1074/jbc.M209706200. PMID 12524422.
- ^ Wang H, Tan YZ, Mu RH, Tang SS, Liu X, Xing SY, et al. (June 2021). "Takeda G Protein-Coupled Receptor 5 Modulates Depression-like Behaviors via Hippocampal CA3 Pyramidal Neurons Afferent to Dorsolateral Septum". Biological Psychiatry. 89 (11): 1084–1095. doi:10.1016/j.biopsych.2020.11.018. PMID 33536132. S2CID 227165118.
- ^ Maruyama T, Miyamoto Y, Nakamura T, Tamai Y, Okada H, Sugiyama E, et al. (November 2002). "Identification of membrane-type receptor for bile acids (M-BAR)". Biochemical and Biophysical Research Communications. 298 (5): 714–719. doi:10.1016/S0006-291X(02)02550-0. PMID 12419312.
- ^ Foord SM, Bonner TI, Neubig RR, Rosser EM, Pin JP, Davenport AP, et al. (June 2005). "International Union of Pharmacology. XLVI. G protein-coupled receptor list". Pharmacological Reviews. 57 (2): 279–288. doi:10.1124/pr.57.2.5. PMID 15914470.
- ^ Wang H, Chen J, Hollister K, Sowers LC, Forman BM (May 1999). "Endogenous bile acids are ligands for the nuclear receptor FXR/BAR". Molecular Cell. 3 (5): 543–553. doi:10.1016/s1097-2765(00)80348-2. PMID 10360171.
- ^ Giaretta PR, Suchodolski JS, Blick AK, Steiner JM, Lidbury JA, Rech RR (January 2019). "Distribution of bile acid receptor TGR5 in the gastrointestinal tract of dogs". Histology and Histopathology. 34 (1): 69–79. doi:10.14670/HH-18-025. PMID 29999170.
- ^ Duboc H, Taché Y, Hofmann AF (April 2014). "The bile acid TGR5 membrane receptor: from basic research to clinical application". Digestive and Liver Disease. 46 (4): 302–312. doi:10.1016/j.dld.2013.10.021. PMC 5953190. PMID 24411485.
- ^ Lun W, Yan Q, Guo X, Zhou M, Bai Y, He J, et al. (February 2024). "Mechanism of action of the bile acid receptor TGR5 in obesity". Acta Pharmaceutica Sinica. B. 14 (2): 468–491. doi:10.1016/j.apsb.2023.11.011. PMC 10840437. PMID 38322325.
- ^ Guo C, Chen WD, Wang YD (2016-12-26). "TGR5, Not Only a Metabolic Regulator". Frontiers in Physiology. 7: 646. doi:10.3389/fphys.2016.00646. PMC 5183627. PMID 28082913.
- ^ "Entrez Gene: GPBAR1 G protein-coupled bile acid receptor 1".
- ^ Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, et al. (January 2006). "Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation". Nature. 439 (7075): 484–489. Bibcode:2006Natur.439..484W. doi:10.1038/nature04330. PMID 16400329. S2CID 4429032.
- ^ Baxter JD, Webb P (January 2006). "Metabolism: bile acids heat things up". Nature. 439 (7075): 402–403. Bibcode:2006Natur.439..402B. doi:10.1038/439402a. PMID 16437098. S2CID 45562883.
- ^ Brighton CA, Rievaj J, Kuhre RE, Glass LL, Schoonjans K, Holst JJ, et al. (November 2015). "Bile Acids Trigger GLP-1 Release Predominantly by Accessing Basolaterally Located G Protein-Coupled Bile Acid Receptors". Endocrinology. 156 (11): 3961–3970. doi:10.1210/en.2015-1321. PMC 4606749. PMID 26280129.
- ^ Lun W, Yan Q, Guo X, Zhou M, Bai Y, He J, et al. (February 2024). "Mechanism of action of the bile acid receptor TGR5 in obesity". Acta Pharmaceutica Sinica. B. 14 (2): 468–491. doi:10.1016/j.apsb.2023.11.011. PMC 10840437. PMID 38322325.
- ^ Meloni AR, DeYoung MB, Lowe C, Parkes DG (January 2013). "GLP-1 receptor activated insulin secretion from pancreatic β-cells: mechanism and glucose dependence". Diabetes, Obesity & Metabolism. 15 (1): 15–27. doi:10.1111/j.1463-1326.2012.01663.x. PMC 3556522. PMID 22776039.
- ^ Drucker DJ (November 2024). "Efficacy and Safety of GLP-1 Medicines for Type 2 Diabetes and Obesity". Diabetes Care. 47 (11): 1873–1888. doi:10.2337/dci24-0003. PMID 38843460.
- ^ Doyle ME, Egan JM (March 2007). "Mechanisms of action of glucagon-like peptide 1 in the pancreas". Pharmacology & Therapeutics. 113 (3): 546–593. doi:10.1016/j.pharmthera.2006.11.007. PMC 1934514. PMID 17306374.
- ^ Ramos LS, Zippin JH, Kamenetsky M, Buck J, Levin LR (September 2008). "Glucose and GLP-1 stimulate cAMP production via distinct adenylyl cyclases in INS-1E insulinoma cells". The Journal of General Physiology. 132 (3): 329–338. doi:10.1085/jgp.200810044. PMC 2518727. PMID 18695009.
- ^ Thomas C, Gioiello A, Noriega L, Strehle A, Oury J, Rizzo G, et al. (September 2009). "TGR5-mediated bile acid sensing controls glucose homeostasis". Cell Metabolism. 10 (3): 167–177. doi:10.1016/j.cmet.2009.08.001. PMC 2739652. PMID 19723493.
- ^ Gribble FM, Williams L, Simpson AK, Reimann F (May 2003). "A novel glucose-sensing mechanism contributing to glucagon-like peptide-1 secretion from the GLUTag cell line". Diabetes. 52 (5): 1147–1154. doi:10.2337/diabetes.52.5.1147. PMID 12716745.
- ^ Kuhre RE, Gribble FM, Hartmann B, Reimann F, Windeløv JA, Rehfeld JF, et al. (April 2014). "Fructose stimulates GLP-1 but not GIP secretion in mice, rats, and humans". American Journal of Physiology. Gastrointestinal and Liver Physiology. 306 (7): G622 – G630. doi:10.1152/ajpgi.00372.2013. PMC 3962593. PMID 24525020.
- ^ Tolhurst G, Reimann F, Gribble FM (January 2009). "Nutritional regulation of glucagon-like peptide-1 secretion". The Journal of Physiology. 587 (1): 27–32. doi:10.1113/jphysiol.2008.164012. PMC 2670019. PMID 19001044.
- ^ Chiang JY (2013), "Bile Acid Metabolism and Signaling", Comprehensive Physiology, 3 (3), John Wiley & Sons, Ltd: 1191–1212, doi:10.1002/cphy.c120023, ISBN 978-0-470-65071-4, PMC 4422175, PMID 23897684
- ^ Yeo XY, Tan LY, Chae WR, Lee DY, Lee YA, Wuestefeld T, et al. (2023-02-02). "Liver's influence on the brain through the action of bile acids". Frontiers in Neuroscience. 17: 1123967. doi:10.3389/fnins.2023.1123967. PMC 9932919. PMID 36816113.
- ^ Banales JM, Prieto J, Medina JF (June 2006). "Cholangiocyte anion exchange and biliary bicarbonate excretion". World Journal of Gastroenterology. 12 (22): 3496–3511. doi:10.3748/wjg.v12.i22.3496. PMC 4087566. PMID 16773707.
- ^ Guzior DV, Quinn RA (June 2021). "Review: microbial transformations of human bile acids". Microbiome. 9 (1): 140. doi:10.1186/s40168-021-01101-1. PMC 8204491. PMID 34127070.
- ^ Hirschfield GM, Heathcote EJ, Gershwin ME (November 2010). "Pathogenesis of cholestatic liver disease and therapeutic approaches". Gastroenterology. 139 (5): 1481–1496. doi:10.1053/j.gastro.2010.09.004. PMID 20849855.
- ^ Dawson PA, Lan T, Rao A (December 2009). "Bile acid transporters". Journal of Lipid Research. 50 (12): 2340–2357. doi:10.1194/jlr.R900012-JLR200. PMC 2781307. PMID 19498215.
- ^ Roda A, Minutello A, Angellotti MA, Fini A (August 1990). "Bile acid structure-activity relationship: evaluation of bile acid lipophilicity using 1-octanol/water partition coefficient and reverse phase HPLC". Journal of Lipid Research. 31 (8): 1433–1443. doi:10.1016/S0022-2275(20)42614-8. PMID 2280184.
Further reading
- Takeda S, Kadowaki S, Haga T, Takaesu H, Mitaku S (June 2002). "Identification of G protein-coupled receptor genes from the human genome sequence". FEBS Letters. 520 (1–3): 97–101. Bibcode:2002FEBSL.520...97T. doi:10.1016/S0014-5793(02)02775-8. PMID 12044878. S2CID 7116392.
- Maruyama T, Miyamoto Y, Nakamura T, Tamai Y, Okada H, Sugiyama E, et al. (November 2002). "Identification of membrane-type receptor for bile acids (M-BAR)". Biochemical and Biophysical Research Communications. 298 (5): 714–719. doi:10.1016/S0006-291X(02)02550-0. PMID 12419312.
- Kawamata Y, Fujii R, Hosoya M, Harada M, Yoshida H, Miwa M, et al. (March 2003). "A G protein-coupled receptor responsive to bile acids". The Journal of Biological Chemistry. 278 (11): 9435–9440. doi:10.1074/jbc.M209706200. PMID 12524422.
- Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, et al. (January 2006). "Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation". Nature. 439 (7075): 484–489. Bibcode:2006Natur.439..484W. doi:10.1038/nature04330. PMID 16400329. S2CID 4429032.
- Thomas SM, Bhola NE, Zhang Q, Contrucci SC, Wentzel AL, Freilino ML, et al. (December 2006). "Cross-talk between G protein-coupled receptor and epidermal growth factor receptor signaling pathways contributes to growth and invasion of head and neck squamous cell carcinoma". Cancer Research. 66 (24): 11831–11839. doi:10.1158/0008-5472.CAN-06-2876. PMID 17178880.
- Yasuda H, Hirata S, Inoue K, Mashima H, Ohnishi H, Yoshiba M (March 2007). "Involvement of membrane-type bile acid receptor M-BAR/TGR5 in bile acid-induced activation of epidermal growth factor receptor and mitogen-activated protein kinases in gastric carcinoma cells". Biochemical and Biophysical Research Communications. 354 (1): 154–159. doi:10.1016/j.bbrc.2006.12.168. PMID 17214962.
- Keitel V, Reinehr R, Gatsios P, Rupprecht C, Görg B, Selbach O, et al. (March 2007). "The G-protein coupled bile salt receptor TGR5 is expressed in liver sinusoidal endothelial cells". Hepatology. 45 (3): 695–704. doi:10.1002/hep.21458. PMID 17326144. S2CID 24892239.
External links
- "Bile Acid Receptor". IUPHAR Database of Receptors and Ion Channels. International Union of Basic and Clinical Pharmacology. Archived from the original on 2016-03-03. Retrieved 2007-11-01.
- GPBAR1+protein,+human at the U.S. National Library of Medicine Medical Subject Headings (MeSH)
This article incorporates text from the United States National Library of Medicine, which is in the public domain.