Langbahn Team – Weltmeisterschaft

Podprzestrzeń komplementarna

Podprzestrzeń komplementarnadomknięta podprzestrzeń liniowa danej przestrzeni liniowo-topologicznej o tej własności, że istnieje taka domknięta podprzestrzeń liniowa

tj. oraz Rozkład przestrzeni na sumę prostą domkniętych podprzestrzeni nazywany jest czasami topologiczną sumą prostą. Ponadto podprzestrzeń przestrzeni liniowo-topologicznej jest komplementarna wtedy i tylko wtedy, gdy jest obrazem pewnego ciągłego operatora liniowego spełniającego warunek (operatory idempotentne nazywane są rzutami). Czasami w geometrycznych rozważaniach dotyczących podprzestrzeni komplementarnych przestrzeni Banacha ważna jest norma rzutu na daną podprzestrzeń. Niech oraz będzie przestrzenią Banacha. Mówi się, że podprzestrzeń liniowa przestrzeni jest -komplementarna, gdy istnieje rzut o normie

Przykłady

Przypisy

  1. J. Lindenstrauss, L. Tzafriri. On the complemented subspaces problem. „Israel J. Math.”, 19 (1971), s. 263–269.
  2. R.S. Phillips, On linear transformations, „Transactions of the American Mathematical Society”, 48 (1940), s. 516–541.
  3. A. Sobczyk, Projection of the space (m) on its subspace c0, „Bulletin of the American Mathematical Society”, 47 (1941), s. 938–947.
  4. J. Bourgain, A counterexample to a complementation problem, „Compositio Math”. 43 (1981), s. 133–144.
  5. H.P. Rosenthal. On the subspaces of Lp (p > 2) spanned by sequences of independent random variables. „Israel J. Math.” 8 (1970), s. 273–303.
  6. G. Bennett, L.E. Dor, V. Goodman, W.B. Johnson, C.M. Newman, On uncomplemented subspaces of Lp, 1 < p < 2, „Israel. Math.” 26 (2) (1977), s. 178–187.
  7. S.J. Szarek, A Banach space without a basis which has the bounded approximation property. „Acta Math.” 159 (1987), s. 81–98.