Langbahn Team – Weltmeisterschaft

Tutte–Grothendieck invariant

In mathematics, a Tutte–Grothendieck (TG) invariant is a type of graph invariant that satisfies a generalized deletion–contraction formula. Any evaluation of the Tutte polynomial would be an example of a TG invariant.[1][2]

Definition

A graph function f is TG-invariant if:[2]

Above G / e denotes edge contraction whereas G \ e denotes deletion. The numbers c, x, y, a, b are parameters.

Generalization to matroids

The matroid function f is TG if:[1]

It can be shown that f is given by:

where E is the edge set of M; r is the rank function; and

is the generalization of the Tutte polynomial to matroids.

Grothendieck group

The invariant is named after Alexander Grothendieck because of a similar construction of the Grothendieck group used in the Riemann–Roch theorem. For more details see:

References

  1. ^ a b Welsh. Complexity, Knots, Colourings and Counting.
  2. ^ a b Goodall, Andrew (2008). "Graph polynomials and Tutte-Grothendieck invariants: an application of elementary finite Fourier analysis". arXiv:0806.4848 [math.CO].