Orders of magnitude (temperature): Difference between revisions
Content deleted Content added
fix mix of imperial and metric units |
mNo edit summary |
||
Line 105: | Line 105: | ||
|326 K||54 °C||129 °F||align=left| hottest reliably reported air temperature on Earth, at [[Death Valley]], [[USA]] - reported on four separate occasions. |
|326 K||54 °C||129 °F||align=left| hottest reliably reported air temperature on Earth, at [[Death Valley]], [[USA]] - reported on four separate occasions. |
||
|- bgcolor=#E0E0E0 align=right |
|- bgcolor=#E0E0E0 align=right |
||
|330 K||58 °C||136.4 °F||align=left| hottest claimed air temperature on Earth, at [[ |
|330 K||58 °C||136.4 °F||align=left| hottest claimed air temperature on Earth, at [[‘Aziziya]] in [[Libya]] - this reading is [[‘Aziziya#Geography and climate|not generally considered reliable]]. |
||
|- bgcolor=#E0E0E0 align=right |
|- bgcolor=#E0E0E0 align=right |
||
|330 K||60 °C||140 °F||align=left|recommended for keeping food warm |
|330 K||60 °C||140 °F||align=left|recommended for keeping food warm |
Revision as of 19:00, 23 December 2011
Factor | Multiple | Item |
---|---|---|
10−∞ | 0 K | absolute zero: free bodies are still, no interaction within or without a thermodynamic system |
10−30 | 1 wK | particular speeds bound paths to exceed size and lifetime of the universe (see least-energy in orders of magnitude (energy)) |
10−18 | 1 aK | macroscopic teleportation of matter Hawking temperature of supermassive black holes |
10−15 | 1 fK | atomic waves coherent over centimeters atomic particles decoherent over centimeters |
10−12 | 1 pK | 100 pK, lowest temperature ever produced, during the nuclear magnetic ordering at Helsinki University of Technology's Low Temperature Lab 450 pK, lowest temperature sodium Bose-Einstein condensate gas ever achieved in the laboratory, at MIT[1] |
10−9 | 1 nK | 50 nK, Fermi melting point of potassium-40 Bose melting point of bosonic atomic gases Doppler-locked refrigerants in laser cooling and magneto-optical traps |
10−6 | 1 μK | nuclear demagnetization |
10−3 | 1 mK | radio excitations 1.7 mK, temperature record for helium-3/helium-4 dilution refrigeration, and the lowest temperature which may be sustained for arbitrarily long time with known techniques. 2.5 mK, Fermi melting point of helium-3 60 mK adiabatic demagnetization of paramagnetic molecules 300 mK in evaporative cooling of helium-3 700 mK, helium-3/helium-4 mixtures begin phase separation 950 mK, melting point of helium microwave excitations |
1 | 1 K | 1 K at the Boomerang nebula, the coldest natural environment known 1.5 K, melting point of overbound helium 2.19 K, lambda point of overbound superfluid helium 2.725 K, cosmic microwave background 4.1 K, superconductivity point of mercury 4.22 K, boiling point of bound helium 5.19 K, critical temperature of helium 7.2 K, superconductivity point of lead 9.3 K, superconductivity point of niobium |
101 | 10 K | Fermi melting point of valence electrons for superconductivity 14.01 K, melting point of bound hydrogen 20.28 K, boiling point of bound hydrogen 33 K, critical temperature of hydrogen 44 K mean on Pluto 53 K mean of Neptune 63 K, melting point of bound nitrogen 68 K mean of Uranus 77.35 K, boiling point of bound nitrogen 90.19 K, boiling point of bound oxygen 92 K, superconductivity point of Y-Ba-Cu-oxide (YBCO) Everyday substances near liquid air's temperature with incipient Fermi-condensate populations result in spontaneose luminescence, loss or lack of hysteresis, inductive and capacitive electronic moments that readily adsorb or expel or float upon unlike substances:[2] |
102 | 100 K | infrared excitations 135 K, highest-temperature superconductor at ambient pressure, mercury barium calcium copper oxide 165 K, glass point of supercooled water 183.75 K (–89.4 °C), coldest air recorded on Earth 192 K, Debye temperature of ice 273.15 K (0 °C), melting point of bound water 273.16 K (0.01 °C), temperature of triple point of water (defining constant) ~293 K, room temperature 373.15 K (100 °C), boiling point of bound water 647 K, critical point of superheated water 737.5 K, mean on Venus See detailed list below |
103 | 1 kK | visible light excitations 500–2200 K on brown dwarfs (photosphere) 1170 K at wood fire 1300 K in lava flows, open flames 1500 K in basalt lava flows ~1670 K at blue candle flame 1811 K, melting point of iron (lower for steel) 1830 K in Bunsen burner flame 1900 K at the Space Shuttle orbiter hull in 8 km/s dive 2022 K, boiling point of lead 2230 K, Debye temperature of carbon 2320 K at open hydrogen flame 2150–2450 K at open hydrocarbon flame 3683 K, melting point of tungsten 3925 K, sublimation point of carbon 4160 K, melting point of hafnium carbide 4800 K, 10 MPa, triple point of carbon[3] 5000 K, 12 GPa melting point of diamond[4] 5100 K in cyanogen-dioxygen flame 5516 K at dicyanoacetylene (carbon subnitride)-ozone flame 5650 K at Earth's Inner Core Boundary 5780 K on Sun 5933 K, boiling point of tungsten 6000 K, mean of the Universe 300,000 years after the Big Bang 7445 K, 850 GPa;[5] 8750 K, 520 GPa;[6] 5400 K, 220 GPa,[7] critical point of diamond/solid III 7735 K, a monatomic ideal gas has one electron volt of kinetic energy ultraviolet excitations 8801 K, 10.56 GPa[8] 7020.5 K, 797 MPa,[9] critical point of carbon anionic sparks |
104 | 10 kK | 10 kK on Sirius A 10–15 kK in mononitrogen recombination 15.5 kK, critical point of tungsten 25 kK, mean of the Universe 10,000 years after the Big Bang 26 kK on white dwarf Sirius B 28 kK in record cationic lightning over Earth 4–8–40–160 kK on white dwarfs 30–400 kK on a planetary nebula's asymptotic giant helium star 37 kK in proton-electron reactions 38 kK on Eta Carinae 50 kK at protostar (core) 53 kK on Wolf-Rayet star R136a1 54.5 kK on ON2 III(f*) star LH64-16[10] >200 kK on Butterfly Nebula ~300 kK at 17 meters from Little Boy's detonation Fermi boiling point of valence electrons X-ray excitations |
106 | 1 MK | γ-ray excitations 1 MK at old neutron stars, brown dwarfs, and gravital deuterium fusion range 1–3–10 MK above Sun (corona) 2.4 MK at T Tauri stars and gravital lithium-6 fusion range 2.5 MK at red dwarfs and gravital protium fusion range 8 MK in solar wind 10 MK at orange dwarfs and gravital helium-3 fusion range 13.6 MK at Sun 10–30–100 MK in stellar flares 20 MK in novæ 23 MK, beryllium-7 fusion range 60 MK above Eta Carinae 85 MK (15 keV) in a magnetic confinement fusion plasma 200 MK at helium star and gravital helium-4 fusion range 230 MK, gravital carbon-12 fusion range 460 MK, gravital neon fusion-disproportionation range 5–530 MK in Tokamak Fusion Test Reactor's plasma 750 MK, gravital oxygen fusion range |
109 | 1 GK | 1 GK, everything 100 seconds after the Big Bang 1.3–1.7 GK, gravital silicon fusion range 3 GK in electron-positron reactions 10 GK in supernovæ 10 GK, everything 1 second after the Big Bang 700 GK in quasars' accretion discs 740 GK, Hagedorn temperature or Fermi melting point of pions |
1012 | 1 TK | 0.1–1 TK at new neutron star 0.5–1.2 TK, Fermi melting point of hadrons into quark-gluon plasma 3–5 TK in proton-antiproton reactions Z0 electronuclear excitations 10 TK, 100 microseconds after the Big Bang 45–67 TK at collapsar of a gamma ray burst 300–900 TK at proton-nickel conversions in the Tevatron's Main Injector |
1015 | 1 PK | 0.3–2.2 PK at proton-antiproton collisions |
1018 | 1 EK | 2–13 EK at heavy nuclear conversions in the Large Hadron Collider |
1021 | 1 ZK | dark matter at active galactic nuclei |
1024 | 1 YK | 0.5–7 YK at ultra-high-energy cosmic ray collisions |
1027 | 1 000 YK | electrocoloral excitations everything 10−35 seconds after the Big Bang |
1030 | 106 YK | 14.2 million YK, Planck temperature of Planck particles and geons or kugelblitzen everything 5×10−44 seconds after the Big Bang |
1033 | 109 YK | theory of everything excitations[citation needed] extradimensional gauge freedom[citation needed] Landau poles[citation needed] |
Detailed list for 100 K to 1000 K
Most ordinary human activity takes place at temperatures of this order of magnitude. Circumstances where water naturally occurs in liquid form are shown in light grey.
Kelvin | Degrees Celsius |
Degrees Fahrenheit |
Condition |
---|---|---|---|
100 K | −173.15 °C | −279.67 °F | |
125 K | −148 °C | −234 °F | superconductivity point of Tl-Ba-Cu-oxide |
138 K | −135 °C | −211 °F | superconductivity point of Hg-Tl-Ba-Ca-Cu-oxide |
140 K | −130 °C | −200 °F | mean on Saturn |
150 K | −120 °C | −190 °F | mean on Jupiter |
183.9 K | −89.2 °C | −128.6 °F | coldest record on Earth, at Vostok |
194.6 K | −78.5 °C | −109.3 °F | sublimation point of carbon dioxide (dry ice) |
210 K | −63 °C | −80 °F | mean on Mars |
234.3 K | −38.83 °C | −37.89 °F | melting point of mercury |
255 K | −18 °C | −0.4 °F | recommended for keeping food frozen |
255.4... K | −17.7... °C | 0 °F | coldest brine-ice solution found by Daniel Gabriel Fahrenheit |
272 K | −1.1 °C | 30 °F | chilly sea |
273.15 K | 0.00 °C | 32.00 °F | melting point of water (at STP) |
278 K | 5 °C | 41 °F | recommended for keeping food cool |
287 K | 14 °C | 57 °F | mean on Earth |
293.6 K | 20.5 °C | 68.9 °F | coldest human body survived |
295 K | 21 °C | 70 °F | room temperature |
304 K | 31 °C | 88 °F | melting point of butter |
307 K | 34 °C | 93 °F | kindling point of white phosphorus |
308 K | 35 °C | 95 °F | warmest sea measured, at the Red Sea |
310 K | 37 °C | 98.6 °F | standard human body |
315 K | 42 °C | 108 °F | usually deadly human fever |
326 K | 54 °C | 129 °F | hottest reliably reported air temperature on Earth, at Death Valley, USA - reported on four separate occasions. |
330 K | 58 °C | 136.4 °F | hottest claimed air temperature on Earth, at ‘Aziziya in Libya - this reading is not generally considered reliable. |
330 K | 60 °C | 140 °F | recommended for keeping food warm |
336 K | 63 °C | 145.4 °F | milk pasteurization |
340 K | 70 °C | 160 °F | food is well done hot springs at which some bacteria thrive |
350 K | 77 °C | 170 °F | poaching of food |
355 K | 82 °C | 180 °F | recommended for coffee brewing |
366 K | 93 °C | 200 °F | simmering of food |
372 K | 99 °C | 210 °F | cake is well done |
373.15 K | 100 °C | 212 °F | boiling point of water |
380 K | 105 °C | 225 °F | oven on very low smoke point of raw safflower oil syrup is concentrated to 75% sugar |
400 K | 127 °C | 260 °F | Concorde nose tip during supersonic flight |
410 K | 140 °C | 275 °F | oven on low |
435 K | 160 °C | 320 °F | syrup is concentrated to 100% sugar |
440 K | 170 °C | 325 °F | oven on low-medium |
450 K | 175 °C | 350 °F | oven on medium mean on Mercury smoke point of butter |
470 K | 200 °C | 400 °F | oven on medium-high |
485 K | 210 °C | 410 °F | kindling point of diesel fuel |
490 K | 220 °C | 425 °F | oven on high kindling range of paper |
510 K | 240 °C | 475 °F | oven on very high kindling range of automotive fuel |
525 K | 250 °C | 485 °F | smoke point of milkfat |
540 K | 265 °C | 510 °F | smoke point of refined safflower oil |
600.65 K | 327.5 °C | 621.5 °F | melting point of lead |
740 K | 460 °C | 870 °F | mean on Venus |
749 K | 476 °C | 889 °F | kindling point of magnesium |
760 K | 480 °C | 900 °F | electric oven on the self-cleaning cycle |
809 K | 536 °C | 997 °F | kindling point of hydrogen |
933.47 K | 660.32 °C | 1220.58 °F | melting point of aluminium |
1000 K | 726.85 °C | 1340.33 °F |
References
- ^ http://physicsworld.com/cws/article/news/18214.
{{cite news}}
: Missing or empty|title=
(help) - ^ http://1911encyclopedia.org/Liquid_Gases "Liquid Gases". Encyclopædia Britannica, 11th edition: Classic Encyclopedia. (1911, 2006)
- ^ A. I. Savvatimscij, "Melting point of graphite and liquid carbon", Physics 46 (12) 1295–1303 (2003), Uspèxi Fizichèscix Nauc, Russian Academy of Sciences
- ^ C. C. Yang and S. Li, "Size-Dependent Temperature-Pressure Phase Diagram of Carbon", J. Phys. Chem. C 112 (5), 1423–1426 (2008)
- ^ Alfredo A. Correa, Stanimir A. Bonev, Giulia Galli, "Carbon under extreme conditions: Phase boundaries and electronic properties from first-principles theory", Proceedings of the National Academy of Sciences. 8 Dec 2005.
- ^ Xiaofei Wang, Sandro Scandolo, Roberto Car, "Carbon Phase Diagram from Ab Initio Molecular Dynamics", Phys. Rev. Let. 95, 185701 (2005)
- ^ Gerald I. Kerley and Lalit Chhabildas, "Multicomponent-Multiphase Equation of State for Carbon", Sandia National Laboratories (2001)
- ^ James N. Glosli and Francis H. Ree, "Liquid-liquid Phase Transformation in Carbon", Phys. Rev. Lett. 82, 4659–4662 (1999)
- ^ Man Chai Chang, Ryoo Ryong, Mu Shik Jhon, "Thermodynamic properties of liquid carbon", Carbon, Volume 23, Issue 5, 481-485 (1985)
- ^ Philip Massey et al, "The Physical Properties and Effective Temperature Scale of O-type Stars as a Function of Metallicity. I. A Sample of 20 Stars in the Magellanic Clouds", The Astrophysical Journal, 608:1001–1027 (2004)