Train protection system: Difference between revisions
195.103.188.139 (talk) No edit summary |
Kabelleger (talk | contribs) Undid revision 450642623 by 195.103.188.139 (talk) |
||
Line 1: | Line 1: | ||
{{Unreferenced|date=December 2009}} |
{{Unreferenced|date=December 2009}} |
||
A '''train protection system''' is a railway technical installation to ensure safe operation in the event of |
A '''train protection system''' is a railway technical installation to ensure safe operation in the event of human failure. |
||
==Development== |
==Development== |
Revision as of 19:34, 15 September 2011
A train protection system is a railway technical installation to ensure safe operation in the event of human failure.
Development
Train stops
The earliest systems were train stops, as still used by the New York Subway, the Toronto Subway, the London Underground, the Moscow Subway (oldest lines only) and the Berlin S-Bahn. Beside every signal is a moveable clamp, which touches a valve on a passing train if the signal is red and opens the brake line, applying the emergency brake. If the signal shows green, the clamp is turned away.
Inductive systems
In this system data is transmitted magnetically between the track and locomotive by magnets mounted beside the rails and on the locomotive.
In the Integra-Signum system the trains are influenced only at given locations, for instance whenever a train ignores a red signal, the emergency brakes are applied and the locomotive's motors are shut down. Additionally, they often require the driver to confirm distant signals (e.g. CAWS) that show stop or caution – failure to do so results in the train stopping. This gives sufficient braking distance for trains following each other, however it cannot always prevent accidents in stations where trains cross paths, because the distance from the red signal to the next obstacle may be too short for the train to brake to a halt.
More advanced systems (e.g. PZB, and ZUB) calculate a braking curve that determines if the train can stop before the next red signal, and if not they brake the train. They require that the train driver enter the weight and the type of brakes into the onboard computer. One disadvantage of this kind of system is that the train cannot speed up before the signal if the signal has switched to green, because the onboard computer's information can only be updated at the next magnet. To overcome that problem, some systems allow additional magnets to be placed between distant and home signals, or data transfer from the signalling system to the onboard computer is continuous (e.g. LZB).
Cab signalling
The newest systems use cab signalling, where the trains constantly receive information regarding their relative positions to other trains. The computer shows the driver how fast he may drive, instead of him relying on exterior signals. Systems of this kind are in common use in France, Germany and Japan, where the high speeds of the trains made it impossible for the train driver to read exterior signals, and distances between distant and home signals are too short for the train to brake.
These systems are usually far more than automatic train protection systems, not only do they prevent accidents, but also actively support the train driver. This goes as far as some systems being nearly able to drive the train automatically.
Future
Because of the many incompatible automatic train protection systems used in Europe and the resulting changes of locomotives at borders (or equipping locomotives with many different systems), efforts have been made to create one common system with different stages of implementation, called the European Train Control System.
Variants
International standards
- European Train Control System (Europe)
Country specific legacy systems
- By System
- ALSN (Russian Federation, Belarus, Estonia, Latvia, Lithuania, Ukraine)
- ASFA (Spain)
- ATB (Netherlands)
- ATC (Sweden, Denmark, Norway, South Korea, Japan, Australia (Queensland))
- ATP (United Kingdom, United States of America, Australia (Queensland))
- ATP (Ireland)
- AWS (United Kingdom, Queensland, South Australia)
- BACC (Italy)
- CAWS (Ireland)
- CBTC (United States of America, Canada, Singapore, Spain, Gabon)
- CONVEL (Portugal)
- Crocodile/Memor (Belgium, France)
- EBICAB (Bulgaria, Norway, Portugal, Spain, Sweden)
- EVM 120 (Hungary)
- HKT (Denmark)
- Integra-Signum (Switzerland)
- KVB (France)
- LZB (Germany, Austria, Spain)
- LS 90 (Czech republic)
- Mirel (Eastern Europe)
- PZB Indusi (Germany, Austria, Romania, Slovenia, Croatia, Bosnia-Herzegovina, Serbia, Montenegro, Macedonia, Israel)
- SHP (Poland)
- SCMT (Italy)
- TASC (Japan)
- TBL (Belgium, Hong Kong)
- TPWS (United Kingdom, Victoria)
- TVM (France, South Korea)
- ZUB 123 (Denmark)
- ZUB 262 (Switzerland)
- By Country
- Austria (Indusi / PZB, LZB)
- Belarus (ALSN)
- Belgium (Le Crocodile, TBL, TVM)
- Bulgaria (EBICAB 700)
- Czech Republic (LS)
- Denmark (ZUB 123)
- Estonia (ALSN)
- Finland (ATP-VR/RHK {JKV})
- France (Le Crocodile, KVB, TVM)
- Germany (Indusi / PZB, LZB)
- Hungary (EVM)
- Ireland (CAWS and ATP)
- Israel (PZB)
- Italy (SCMT, Blocco Automatico a Correnti Codificate, ETCS)
- Japan (TASC)
- Latvia (ALSN)
- Lithuania (ALSN)
- Luxembourg (Le Crocodile, MEMOR II+)
- Netherlands (ATB)
- Norway (EBICAB 700)
- Poland (SHP)
- Portugal (EBICAB 700, named on the Portuguese Railways as CONVEL)
- Romania (Indusi / PZB)
- Russian Federation (ALSN)
- Singapore (CBTC)
- Slovak Republic (LS)
- Spain (ASFA, LZB, EBICAB 900, SELCAB)
- Sweden (EBICAB 700, Ansaldo L10000)
- Switzerland (ZUB 121, Integra-Signum, ETCS)
- Ukraine (ALSN)
- United Kingdom (ATP, TPWS, AWS), High Speed 1 (TVM, KVB)
- United States of America (ATP)