Langbahn Team – Weltmeisterschaft

Talk:Plutonium: Difference between revisions

Content deleted Content added
Jlodman (talk | contribs)
m synthetic or natural?
Line 86: Line 86:
The first paragraph of the article states "Plutonium-238 has a half-life of 88 years and emits alpha particles.". Further down the page we discover "The isotope plutonium-238 has a half-life of 87.5 years.". Meanwhile the actual Plutonium-238 page informs the reader that "Plutonium-238, is a radioactive isotope of plutonium with a half-life of 87.7 years.". While I don't know that there are many aging scientists having waited patiently for 87.5 years for their sample of plutonium-238 to reach it's half-life, only to discover that they have a few months longer to wait, I do think that consistency is best. Surely someone has an in-term or two and a stopwatch to spare? [[User:94dgrif|94dgrif]] ([[User talk:94dgrif|talk]]) 07:18, 2 July 2010 (UTC)
The first paragraph of the article states "Plutonium-238 has a half-life of 88 years and emits alpha particles.". Further down the page we discover "The isotope plutonium-238 has a half-life of 87.5 years.". Meanwhile the actual Plutonium-238 page informs the reader that "Plutonium-238, is a radioactive isotope of plutonium with a half-life of 87.7 years.". While I don't know that there are many aging scientists having waited patiently for 87.5 years for their sample of plutonium-238 to reach it's half-life, only to discover that they have a few months longer to wait, I do think that consistency is best. Surely someone has an in-term or two and a stopwatch to spare? [[User:94dgrif|94dgrif]] ([[User talk:94dgrif|talk]]) 07:18, 2 July 2010 (UTC)
:Thanks. Corrected to 87.74 yrs. [[User:Materialscientist|Materialscientist]] ([[User talk:Materialscientist|talk]]) 07:30, 2 July 2010 (UTC)
:Thanks. Corrected to 87.74 yrs. [[User:Materialscientist|Materialscientist]] ([[User talk:Materialscientist|talk]]) 07:30, 2 July 2010 (UTC)

== Contradictory ==
The lead of the article refers to plutonium as a synthetic element, then later refers to an isotope present in nature. This is at the very least confusing.
jlodman 06:21, 19 July 2010 (UTC)

Revision as of 06:21, 19 July 2010

Template:V0.5

Featured articlePlutonium is a featured article; it (or a previous version of it) has been identified as one of the best articles produced by the Wikipedia community. Even so, if you can update or improve it, please do so.
Main Page trophyThis article appeared on Wikipedia's Main Page as Today's featured article on February 23, 2009.
Article milestones
DateProcessResult
March 5, 2007Good article nomineeNot listed
December 31, 2008Featured article candidatePromoted
January 11, 2009Peer reviewReviewed
Current status: Featured article

Decay Power

There is some confusion on this subject. Daughter isotopes can give off much higher power than parent isotopes or vice versa. Most decays of significance for power calculations are alpha decay of about 5 Mev. This represents a velocity for this helium nucleus of about c/20. What determines power is the half-life of the alpha emitter. In general, short half-lives have a high decay power and long half lives have a low one. For a given mass, short half-lives have many decays per second and long half-lives have few.

Almost all alpha and beta decays are absorbed inside the bulk mass of the emitter and heat it. Alpha is ordinarily the only high energy decay. Gamma radiation and neutron emission are different. For small samples, they totally escape and heat the surroundings, not the emitter. Such emitters are worthless for heat sources as well as producing dangerous radiation. Trojancowboy (talk) 22:13, 27 January 2010 (UTC)[reply]

Sure, instantaneous power can be much higher for daughter products, but I was talking about time-integrated power (which we were calculating above), considering that gamma or neutrons do not dominate this decay (alphas or electrons are same here in terms of absorption because 1 kg of material is thick enough). Materialscientist (talk) 22:30, 27 January 2010 (UTC)[reply]

Morris Perlman

Perlman, recently deleted, worked with Seaborg later, in identifying naturally occurring Pu. Is he worth reinstating, this time in his right context?--Old Moonraker (talk) 22:30, 15 March 2010 (UTC)[reply]

SIPRI

The article contains this statement, sourced from the anti-nuclear organization SIPRI:, "SIPRI estimated the world plutonium stockpile in 2007 as about 500 tons, divided equally between weapon and civilian stocks, but all weapon-usable.". It repeats the old fallacy of reactor-grade Pu being a proliferation concern.

While it is true that fuel-grade Pu can be used, by a state or organization capable of advanced designs, this is not true for reactor-grade material. At levels this high of 240Pu poisoning, you have to not only content with the timing issues from spontaneous fission, but the isotopes lower neutron multiplication factor. No nuclear state in the world -- even the US and Russia -- has ever sucessfully tested a design with 240Pu levels higher than somewhere between 10-15%.

The SIPRI claim about total world Pu stockpiles may well be accurate, and if other editors feel it should be left in, I have no objection. FellGleaming (talk) 05:14, 12 April 2010 (UTC)[reply]

On wikipedia we have to ensure that all information is verifiable by reliable sources. Anything that cannot be verified is liable to being removed. Thank you for spotting the erroneous information. Since the SIPRI has a clear bias towards anti-nuclear its sources may not necessarily be entirely reliable. Therefore it would be better to find a neutral source that can back up their assertions. Cheers, Jdrewitt (talk) 07:14, 12 April 2010 (UTC)[reply]

Infobox image

Could be as small as an actual shirt button or larger than a soda can
Proposed replacement

The currently used infobox image has two basic problems, first there is no way of knowing how big it is. Second, and probably most importantly, it's confusing. A couple of people I've talked to thought the picture showed a button of Pu which had been sliced to reveal a shiny unoxidized part. (I pointed out that the inside should be shiny too, since it wasn't this meant it was something besides Pu.) To solve both problems I uploaded a picture including somebody's hands (for scale) and no guessing as to what is/is not Pu. Anynobody(?) 21:09, 24 May 2010 (UTC)[reply]

The salt on the bottom of the first image is misleading, but the replacement has many problems - mostly in distracting details (hands and plastic). Size is not crucial here because both samples could have different scales, from buttons to blocks. We can use the image on the right though. Please comment. Materialscientist (talk) 23:19, 24 May 2010 (UTC)[reply]
I'm cool with your suggestion too, it certainly shows the scale and it's impossible to miss the Pu :) (Usually I'd agree that the size of a sample in an infobox is irrelevant, but folks might wonder if the amount of Pu they're looking at is enough for a bomb, fuel rod, or just a sample.) Anynobody(?) 04:30, 26 May 2010 (UTC)[reply]
I don't like the current image at all. The image with the gloves is better but is a bit distracting, it would be better to show an image just of the element. Materialscientist's image is much better except it isn't in colour which I think it ought to be. Jdrewitt (talk) 12:39, 26 May 2010 (UTC)[reply]
Changed the image to the right one until a better one is found. I'm afraid it is a scan of an old b/w print, thus no colors. Materialscientist (talk) 12:49, 26 May 2010 (UTC)[reply]
How about this one: [1]? A higher-res version should be available from the DOE (via contact info on the site) if we want to use it. I like that it gives the scale and appearance quite well but in an interesting, yet not-distracting way. To get the caption ("Rocky Flats - Plutonium Button") and info, look up image #2000032 in the "advanced search" here. --Mr.98 (talk) 22:22, 30 June 2010 (UTC)[reply]

Amazingly old vandalism

Wow! In March 2008, an anonymous IP added "Zachary M. Tatom" to the list of discoverers of plutonium. (The aforementioned IP then went on to vandalize another article in a fairly overt fashion.) Suspicious that such a prominent scientist should have had a red link, no? Don't worry, another regular contributor quickly tagged the addition as needing citation. Eventually someone plugged a general "discovery of plutonium" article as a replacement for the "citation needed" tag (they are so troublesome to look at), without bothering to check if it actually said what the article said, and there this "fact" has sat, in an article that has had considerable editing done to it since then, including being designated a "featured article" in December 2008 and passing a peer review in January 2009. And yet our Dr. Tatom continued to have a nice bright red link and literally zero hits for his name on the internet except for pages which have haplessly copied this hapless article. All bugs are shallow... if anybody actually bothers to look into them, even when they are really obvious. A sad showing for us all...  :-/ ("Well, at least YOU caught it! Thus the system works! Hooray!") --Mr.98 (talk) 22:07, 30 June 2010 (UTC)[reply]

The Half-Life of Plutonium-238

The first paragraph of the article states "Plutonium-238 has a half-life of 88 years and emits alpha particles.". Further down the page we discover "The isotope plutonium-238 has a half-life of 87.5 years.". Meanwhile the actual Plutonium-238 page informs the reader that "Plutonium-238, is a radioactive isotope of plutonium with a half-life of 87.7 years.". While I don't know that there are many aging scientists having waited patiently for 87.5 years for their sample of plutonium-238 to reach it's half-life, only to discover that they have a few months longer to wait, I do think that consistency is best. Surely someone has an in-term or two and a stopwatch to spare? 94dgrif (talk) 07:18, 2 July 2010 (UTC)[reply]

Thanks. Corrected to 87.74 yrs. Materialscientist (talk) 07:30, 2 July 2010 (UTC)[reply]

Contradictory

The lead of the article refers to plutonium as a synthetic element, then later refers to an isotope present in nature. This is at the very least confusing. jlodman 06:21, 19 July 2010 (UTC)