Pit (nuclear weapon): Difference between revisions
Winston365 (talk | contribs) m fixed broken anchor link implosion weapon |
m minor copy edits |
||
Line 366: | Line 366: | ||
Contamination of the pit with deuterium and tritium, whether accidental or if filled by design, can cause a hydride corrosion, which manifests as [[pitting corrosion]] and a growth of a surface coating of [[pyrophoric]] [[plutonium hydride]]. It also greatly accelerates the corrosion rates by atmospheric oxygen.<ref name="bredl.org"/> Deuterium and tritium also cause [[hydrogen embrittlement]] in many materials. |
Contamination of the pit with deuterium and tritium, whether accidental or if filled by design, can cause a hydride corrosion, which manifests as [[pitting corrosion]] and a growth of a surface coating of [[pyrophoric]] [[plutonium hydride]]. It also greatly accelerates the corrosion rates by atmospheric oxygen.<ref name="bredl.org"/> Deuterium and tritium also cause [[hydrogen embrittlement]] in many materials. |
||
Improper storage can promote corrosion of the pits. The AL-R8 containers used in the [[Pantex]] facility for storage of the pits are said to promote instead of hinder corrosion, and tend to corrode themselves. The decay heat released by the pits is also a concern; some pits in storage can reach as high |
Improper storage can promote corrosion of the pits. The AL-R8 containers used in the [[Pantex]] facility for storage of the pits are said to promote instead of hinder corrosion, and tend to corrode themselves. The decay heat released by the pits is also a concern; some pits in storage can reach temperatures as high as 150°C, and the storage facilities for larger numbers of pits may require active cooling. Humidity control can also present problems for pit storage.<ref>[http://www.texasradiation.org/pantex.html Texas Radiation Online - Pantex Plutonium Plant - Nuclear Weapons]. Texasradiation.org. Retrieved on 2010-02-08.</ref> |
||
Beryllium cladding can be corroded by some solvents used for cleaning of the pits. Research shown that [[trichloroethylene]] (TCE) causes beryllium corrosion, while [[trichloroethane]] (TCA) does not.<ref>[http://www.uraweb.org/accomp.html URA Accomplishments]. Uraweb.org. Retrieved on 2010-02-08.</ref> [[Pitting corrosion]] of beryllium cladding is a significant concern during prolonged storage of pits in the [[Pantex]] facility. |
Beryllium cladding can be corroded by some solvents used for cleaning of the pits. Research shown that [[trichloroethylene]] (TCE) causes beryllium corrosion, while [[trichloroethane]] (TCA) does not.<ref>[http://www.uraweb.org/accomp.html URA Accomplishments]. Uraweb.org. Retrieved on 2010-02-08.</ref> [[Pitting corrosion]] of beryllium cladding is a significant concern during prolonged storage of pits in the [[Pantex]] facility. |
Revision as of 09:19, 25 May 2010
The pit is the core of an implosion weapon – the fissile material and any neutron reflector or tamper bonded to it. Some weapons tested during the 1950s used pits made with U-235 alone, or in composite with plutonium,[1] but all-plutonium pits are the smallest in diameter and have been the standard since the early 1960s.
Pit designs
The pits of the first nuclear weapons were solid, with an urchin neutron initiator in their center. The gadget and Fat Man used pits made of solid hot pressed (at 400 °C and 200 MPa in steel dies) half-spheres of 9.2 cm diameter, weighing with a 2.5 cm internal cavity for the initiator. The gadget's pit was electroplated with 0.13 mm of silver; the layer however developed blistering and the blisters had to be ground and plated with gold leaf before the test. The Fat Man pit and the subsequent ones were plated with nickel. A hollow pit was considered but decided against due to higher requirements for implosion accuracy.
Later designs used TOM initiators of similar design but diameter only about 1 cm. The internal neutron initiators were yet later phased out and replaced with pulsed neutron sources, and with boosted fission weapons.
Efficiency of the implosion can be increased by leaving an empty space between the tamper and the pit, causing a rapid acceleration of the shock wave before it impacts the pit. This method is known as levitated-pit implosion. Levitated pits were tested in 1948 with Fat Man style bombs, and became obsolete with the advent of hollow pits.
The early weapons with a levitated pit had a removable pit, called open pit. It was stored separately, in a special capsule called birdcage.[2]
During implosion of a hollow pit, the plutonium layer accelerates inwards, colliding in the middle and forming a supercritical highly dense sphere. Due to the added momentum, the plutonium itself plays part of the role of the tamper, requiring smaller amount of uranium in the tamper layer, reducing the warhead weight and size.
The efficiency of the hollow pits can be further increased by injecting a 50%/50% mixture of deuterium and tritium into the cavity immediately before the implosion, so called "boosting"; this also lowers the minimum amount of plutonium for achieving a successful explosion. The higher degree of control of the initiation, both by the amount of deuterium-tritium mixture injection and by timing and intensity of the neutron pulse from the external generator allowed designing of variable yield weapons.
The yield of the weapons can be also selected by the choice of a pit, while keeping the rest of the design identical; e.g. the Mark 4 nuclear bomb can be equipped with three different pits: 49-LTC-C (levitated uranium-235), 49-LCC-C (levitated composite uranium-plutonium), and 50-LCC-C (levitated composite).[3] This approach is not suitable for field selectability of the yield of the more modern weapons with nonremovable pits, but allows production of multiple weapon subtypes with different yields for different tactical uses.
The early US designs were based on standardized Type C and Type D pit assemblies. The Mark 4 bomb used the Type C and Type D pits, which were insertable manually in flight. The Mark 5 bomb used Type D pits, with automated in-flight insertion; the W-5 warhead used the same. Its successor, Mark 6 bomb, presumably used same or similar pits.
The pit can be composed of plutonium-239, plutonium-239/uranium-235 composite, or uranium-235 only. Plutonium is the most common, but e.g. the Violet Club bomb and Orange Herald warhead used massive hollow pits, consisting of 87 and 117 kg (98 and 125 kg according to other sources) of highly enriched uranium. The Green Grass fission core consisted of a sphere of highly enriched uranium, with inner diameter of 560 mm, wall thickness of 3.6 mm and mass of 70–86 kg; the pit was completely supported by the surrounding natural uranium tamper. Such massive pits consisting more than one critical mass of fissile material present a significant safety risk, as even an asymmetrical detonation of the implosion shell may cause a kiloton-range explosion.[4] The largest-yield pure-fission weapon, the 500-kiloton Mark 18 nuclear bomb, used a hollow pit composed of more than 60 kilograms of highly enriched uranium, about four critical masses; the safing was done with an aluminium-boron chain inserted in the pit.
A sealed pit means that a solid metal barrier is formed around the pit inside a nuclear weapon, with no openings. This protects the nuclear materials from environmental degradation and helps reduce the chances of their release in case of an accidental fire or minor explosion. The first US weapon employing a sealed pit was the W25 warhead. The metal is often stainless steel, but also beryllium, aluminium, and possibly vanadium. Beryllium is brittle, toxic and expensive, but is an attractive choice due to its role as a neutron reflector, lowering the needed critical mass of the pit. There is probably a layer of interface metal between plutonium and beryllium, capturing the alpha particles from decay of plutonium (and americium and other contaminants) as otherwise they would react with beryllium and produce neutrons. Beryllium tampers/reflectors went into use in mid-1950s; the parts were machined from pressed powder beryllium blanks in the Rocky Flats Plant.[5]
More modern plutonium pits are hollow. An often quoted appearance of some is a hollow sphere of a suitable structural metal, of the approximate size and weight of a bowling ball, with a channel for injection of tritium in case of boosted fission weapons, with the internal surface lined with plutonium. The size, usually between a bowling ball and a tennis ball, accuracy of sphericity, and weight and isotopic composition of the fissile material, the principial factors influencing the weapon properties, are often classified. The hollow pits can be made of half shells with three joint welds around the equator, and a tube brazed (to beryllium or aluminium shell) or electron beam or TIG-welded (to stainless steel shell) for injection of the boost gas.[6] Beryllium-clad pits are more vulnerable to fracture, more sensitive to temperature fluctuations, more likely to require cleaning, susceptible to corrosion with chlorides and moisture, and can expose workers to toxic beryllium.
Newer pits contain about 3 kilograms of plutonium. Older pits used about 4-5 kilograms.[7]
Further miniaturization was achieved by linear implosion. An elongated subcritical solid pit, reshaped into a supercritical spherical shape by two opposite shock waves, and later a hollow pit with more precisely shaped shock waves, allowed construction of relatively very small nuclear warheads. The configuration was however considered prone to accidental high-yield detonation when the explosive gets accidentally initiated, unlike a spherical implosion assembly where asymmetric implosion just scatters the pit around. This necessitated special design precautions, and a series of safety tests, including one-point safety. Non-spherical pits are a significant technological advancement, allowing designing smaller, lighter nuclear devices, suitable for e.g. multiple independently targetable reentry vehicles. Miniaturized warheads that employ linear implosion design, e.g. the W88, frequently use non-spherical, oblate spheroid pits. This configuration was first used in W47.[8]
In September 1992, China allegedly performed a successful nuclear test of a non-spherical pit, a crucial technological advancement.[9]
Pits can be shared between weapon designs. E.g. the W89 warhead is said to be reusing pits from the W68s. Many pit designs are standardized and shared between different physics packages; the same physics packages are often used in different warheads. Pits can be also reused; the sealed pits extracted from disassembled weapons are commonly stockpiled for direct reuse. Due to low aging rates of the plutonium-gallium alloy, the shelf life of pits is estimated to be a century or more. The oldest pits in the US arsenal are still less than 50 years old.
The sealed pits can be classified as bonded or non-bonded. Non-bonded pits can be disassembled mechanically; a lathe is sufficient for separating the plutonium. Recycling of bonded pits requires chemical processing.[6]
Pits of modern weapons are said to have radius of about 5 centimeters.[10]
Weapons and pit types
Design lab | Weapon | Pit type | Status | Used in | Comment |
---|---|---|---|---|---|
LANL | B61-3,4,10 | 123 | Enduring Stockpile | bomb | |
LANL | B61-7,11 | 125 | Enduring Stockpile | bomb | |
LANL | B61-4 | 118 | Enduring Stockpile | bomb | |
LANL | W76 | 116 | Enduring Stockpile | TridentI and Trident II SLBM | most heat-sensitive LANL design |
LANL | W78 | 117 | Enduring Stockpile | LGM-30 Minutman ICBM | |
LANL | W80 | 124 | Enduring Stockpile | very similar to W84, modification of B61; AGM-86, AGM-129, BGM-109 Tomahawk | responsibility being transferred to LLNL |
LANL | W80 | 119 | Enduring Stockpile | very similar to W84, modification of B61; AGM-86, AGM-129, BGM-109 Tomahawk | |
LANL | W80-0 | Enduring Stockpile | BGM-109 Tomahawk | supergrade plutonium, low radiation, for submarines | |
LANL | W88 | 126 | Enduring Stockpile | Trident II SLBM | linear implosion, non-spherical pit |
LLNL | B83 | MC3350 | Enduring Stockpile | gravity bomb | heaviest pit, fire-resistant pit |
LLNL | W62 | MC2406 | Enduring Stockpile | LGM-30 Minuteman ICBM | |
LLNL | W84 | ? | Enduring Stockpile | very similar to W80; BGM-109G GLCM | fire-resistant pit |
LLNL | W87 | MC3737 | Enduring Stockpile | LGM-118A Peacekeeper | fire-resistant pit |
LANL | B28 | 83 | retired | bomb | |
LANL | B28-0 | 93 | retired | bomb | minimum decay heat |
LANL | B43 | 79 | retired | bomb | beryllium-clad |
LANL | B43-1 | 101 | retired | Tsetse primary; bomb | beryllium-clad |
LANL | W33 | ? | retired | 8" nuclear artillery shell | |
LANL | W44 | 74 | retired | Tsetse primary; RUR-5 ASROC antisubmarine | beryllium-clad |
LANL | W44-1 | 100 | retired | Tsetse primary | beryllium-clad |
LANL | W50-1 | 103 | retired | Tsetse primary; MGM-31 Pershing IRBM | |
LANL | B54 | 81 | retired | bomb | require cleaning before long-term storage |
LANL | B54-1 | 96 | retired | bomb | require cleaning before long-term storage |
LANL | B57 | 104 | retired | Tsetse primary; bomb | |
LANL | W59 | 90 | retired | Tsetse primary; Minuteman I ICBM | |
LANL | B61-0 | 110 | retired | bomb | |
LANL | B61-2,5 | 114 | retired | bomb | |
LANL | W66 | 112 | retired | Sprint antiballistic missile | |
LANL | W69 | 111 | retired | AGM-69 SRAM | |
LANL | W85 | 128 | retired | Pershing II | |
LLNL | W48 | MC1397 | retired | 6.1" nuclear artillery shell | beryllium-clad, require cleaning before long-term storage |
LLNL | W55 | MC1324 | retired | UUM-44 SUBROC antisubmarine missile | beryllium-clad? |
LLNL | W56 | MC1801 | retired | Minuteman I, Minuteman II | high radiation, require cleaning before long-term storage |
LLNL | W68 | MC1978 | retired | UGM-73 Poseidon SLBM | |
LLNL | W70-0 | MC2381 | retired | MGM-52 Lance | |
LLNL | W70-1 | MC2381a | retired | MGM-52 Lance | |
LLNL | W70-2 | MC2381b | retired | MGM-52 Lance | |
LLNL | W70-3 | MC2381c | retired | MGM-52 Lance, enhanced-radiation | |
LLNL | W71 | ? | retired | LIM-49 Spartan antiballistic missile | require cleaning before long-term storage |
LLNL | W79 | MC2574 | retired | 8" nuclear artillery shell | beryllium-clad? |
Safety considerations
The first weapons had a removable pit, which got installed into the bomb just shortly before its deployment. The ongoing miniaturization led to design changes, where the pit could be inserted only in the factory during the device assembly. This necessitated safety testing to make sure the accidental detonation of the high explosives won't cause a full-scale nuclear explosion; the Project 56 was one of such series of tests.
Accidental high-yield detonation was always a concern. The levitated pit design made it practical to allow in-flight insertion of pits to the bombs, separating the fissile core from the explosives around it. Many cases of accidental bomb losses and explosions therefore led only to dispersal of uranium from the bomb's tamper. Later hollow-pit designs, where there is no space between the pit and the tamper, however made this impossible.
The pits of earlier weapons had their inner cavity accessible. For safety, objects were inserted into the pit and removed only when needed. Some larger pits, e.g. the British Green Grass, had their inner cavity lined with rubber and filled with metal balls; this design was very improvised and far from optimal, e.g. subjecting the safed pit with balls inside to vibration, e.g. in an airplane, could lead to its damage. A fine metal chain from a neutron absorbing material (the same used for reactor control rods, e.g. cadmium), can be used instead. The W47 warhead had its pit filled with a cadmium-boron wire when it was manufactured; at arming the weapon, the wire was pulled out to a spool by a small motor and could not be reinserted again. However the wire tended to become brittle and break during removal, making its complete removal impossible and rendering the warhead a dud.[12]
The switch from solid to hollow pits caused a work safety issue; the larger surface-to-mass ratio led to comparatively higher emission of gamma rays and led to the necessity of installation of better radiation shielding in the Rocky Flats production facility. The increased amount of needed rolling and machining led to higher consumption of machining oil and tetrachloromethane, used for degreasing the parts afterwards and creating a large amount of contaminated waste. The pyrophoric plutonium shavings also posed a risk of self-ignition.[13]
Sealed pits require a different way of safing. Many techniques are used, including Permissive Action Links[14] and strong link weak link systems, designed to fail in case of an accident or improper arming sequence; these include mechanical interlocks, critical parts designed to malfunction in case of fire or impact, etc.
Beryllium cladding, while advantageous technically, poses risk for the weapon plant employees. Machining the tamper shells produces beryllium and beryllium oxide dust; its inhalation can cause berylliosis. By the 1996, the US Department of Energy identified more than 50 cases of chronic berylliosis between the nuclear industry employees, including three dozens in the Rocky Flats Plant; several died.[5]
After the 1966 Palomares B-52 crash and the 1968 Thule Air Base B-52 crash, safety of weapons against accidental plutonium dispersal became a concern of US military.
Fire-resistant pits (FRP) are a safety feature of modern nuclear weapons, reducing plutonium dispersal in case of fire. The current pits are designed to contain molten plutonium in temperatures up to 1000 °C, the approximate temperature of a burning aircraft fuel, for several hours.[15] Fire-resistant pits would be of no help in case of being scattered around by an explosion, therefore they are used together with insensitive high explosives, which should be resistant to accidental detonation by impact or fire, and undetonable propellants when used in missiles. Vanadium cladding was tested for design of fire-resistant pits, but it is unknown if it is in use or only experimental. The W87 warhead is an example of a FRP-employing assembly.[16] FRP however does not provide protection if the pit cladding is mechanically damaged, and may fail if subjected to missile fuel fire, which has higher burning temperature (about 2000 °C) than aircraft fuel (about 1000 °C).[17][18] Severe weight/size constraints may preclude use of both FRO and insensitive explosives.[19] SLBMs, with their size considerations and more energetic and more vulnerable fuel, tend to be less safe than ICBMs.[20]
Many countries do not employ advanced safety features in their designs; India, Pakistan, and (at least earlier) Chinese designs are likely to lack this degree of safety. Russian weapons are said to be less safe than American, more susceptible to plutonium dispersal during a fire or accident or even low-yield explosions due to inadequate one-point safety.[17]
Other energetic materials in the vicinity of the pit also influence its safety. US missile propellants come in two general classes. The class 1.3, fire hazard but very difficult to impossible to detonate; an example is 70% ammonium perchlorate, 16% aluminium, and 14% binder. The class 1.1, both fire and detonation hazard, is a double-base propellant based on cross-linked polymer, containing 52% HMX, 18% nitroglycerine, 18% aluminium, 4% ammonium perchlorate, and 8% binder. The 1.1 propellant has 4% higher specific impulse (about 270 s versus 260 s), giving 8% longer range for constant burning time. The insensitive high explosives are also less powerful, necessitating larger and heavier warhead, reducing the missile range - or sacrificing some yield. The safety/performance tradeoff is especially important for e.g. submarines.[18] As of 1990, the Trident SLBMs used both detonable fuel and non-insensitive explosives.[21]
Material considerations
Casting and then machining plutonium is difficult not only because of its toxicity, but also because plutonium has many different metallic phases, also known as allotropes. As plutonium cools, changes in phase result in distortion and cracking. This distortion is normally overcome by alloying it with 3–3.5 molar% (0.9–1.0% by weight) gallium, forming a plutonium-gallium alloy, which causes it to take up its delta phase over a wide temperature range.[22] When cooling from molten it then suffers only a single phase change, from epsilon to delta, instead of the four changes it would otherwise pass through. Other trivalent metals would also work, but gallium has a small neutron absorption cross section and helps protect the plutonium against corrosion. A drawback is that gallium compounds themselves are corrosive and so if the plutonium is recovered from dismantled weapons for conversion to plutonium dioxide for power reactors, there is the difficulty of removing the gallium.
Because plutonium is chemically reactive it is common to plate the completed pit with a thin layer of inert metal, which also reduces the toxic hazard.[23] The gadget used galvanic silver plating; afterwards, nickel deposited from nickel tetracarbonyl vapors was used,[23] but gold is now preferred.[citation needed]
To produce the first pits, hot pressing was used to optimally use the scarce plutonium. Later designs used machined pits, but turning produces a large amount of waste, both as pyrophoric turnings of plutonium and plutonium-contaminated oils and cutting fluids. The goal for the future is direct casting of the pit. In absence of nuclear testing, however, the slightly different nature of cast and machined surfaces may cause difficult to predict performance differences.[24]
Corrosion issues
Both uranium and plutonium are very susceptible to corrosion. A number of the problem-plagued W47 UGM-27 Polaris warheads had to be replaced after corrosion of the fissile material was discovered during routine maintenance. The W58 pits also suffered corrosion problems.[25] The W45 pit was prone to corrosion that could alter its geometry.[26] The Green Grass pit was also corrosion-prone. The radioactivity of the materials used can also cause radiation corrosion in the surrounding materials. Plutonium is highly susceptible to humidity; moist air increases corrosion rate about 200 times. Hydrogen has strong catalytic effect on corrosion; its presence can accelerate corrosion rate by 13 orders of magnitude. Hydrogen can be generated from moisture and nearby organic materials (e.g. plastics) by radiolysis. These factors cause issues with storage of plutonium. The volume increase during oxidation can cause rupture of storage containers or deformation of pits.[27]
Contamination of the pit with deuterium and tritium, whether accidental or if filled by design, can cause a hydride corrosion, which manifests as pitting corrosion and a growth of a surface coating of pyrophoric plutonium hydride. It also greatly accelerates the corrosion rates by atmospheric oxygen.[6] Deuterium and tritium also cause hydrogen embrittlement in many materials.
Improper storage can promote corrosion of the pits. The AL-R8 containers used in the Pantex facility for storage of the pits are said to promote instead of hinder corrosion, and tend to corrode themselves. The decay heat released by the pits is also a concern; some pits in storage can reach temperatures as high as 150°C, and the storage facilities for larger numbers of pits may require active cooling. Humidity control can also present problems for pit storage.[28]
Beryllium cladding can be corroded by some solvents used for cleaning of the pits. Research shown that trichloroethylene (TCE) causes beryllium corrosion, while trichloroethane (TCA) does not.[29] Pitting corrosion of beryllium cladding is a significant concern during prolonged storage of pits in the Pantex facility.
Isotopic composition issues
The presence of plutonium-240 in the pit material causes increased production of heat and neutrons, impairs fission efficiency and increases the risk of predetonation and fizzle. Weapon-grade plutonium therefore has plutonium-240 content limited to less than 7%. Supergrade plutonium has less than 4% of the 240 isotope, and is used in systems where the radioactivity is a concern, e.g. in the US Navy weapons which have to share confined spaces on ships and submarines with the crews.
Plutonium-241, commonly comprising about 0.5% of weapon-grade plutonium, decays to americium-241, which is a powerful gamma radiation emitter. After several years, americium builds up in the plutonium metal, leading to increased gamma activity that poses occupational hazard for workers. Americium should therefore be separated, usually chemically, from newly produced and reprocessed plutonium.[7] However in around 1967 the Rocky Flats Plant stopped this separation, blending up to 80% of old americium-containing pits directly to the foundry instead, in order to reduce costs and increase productivity; this led to higher exposition of workers to gamma radiation.[13]
Production and inspections
For the purpose of weapons inspection, the Radiation Identification System, together with other methods, was developed. It allows fingerprinting of the nuclear weapons for verification of identity and status, using various physics methods, e.g. gamma spectroscopy with high-resolution germanium detectors. The 870.7 keV line in the spectrum, corresponding to the first excited state of oxygen-17 indicates presence of plutonium(IV) oxide in the sample. The age of the plutonium can be established by measuring the ratio of plutonium-241 and its decay product, americium-241.[30] However, even passive measurements of gamma spectrums may be a touchy issue of international weapon inspections, as it allows determination of e.g. the isotopic composition of plutonium, which can be considered a secret.
Between 1954 and 1989, pits for US weapons were produced at the Rocky Flats Plant; however the plant had to be closed due to numerous safety issues. The Department of Energy attempted to restart pit production there, but repeatedly failed. In 1993, DOE relocated the beryllium production operations from defunct Rocky Flats Plant to Los Alamos National Laboratory; in 1996 also the pit production was relocated there.[31] The reserve and surplus pits and pits recovered from disassembled nuclear weapons, over 12,000 pieces, are stored in the Pantex plant.[6] 5000 of them, presenting about 15 tons of plutonium, are designated as strategic reserve, the rest is surplus to be withdrawn.[32] The current LANL production of new pits is limited to about 20 pits per year, though NNSA is pushing to increase the production, for the Reliable Replacement Warhead program. The US Congress however keeps denying funding.
Russia stores the material from decommissioned pits in the Mayak facility.[33]
Pit recycling
Recovery of plutonium from decommissioned pits can be achieved by numerous means, both mechanical (e.g. removal of cladding by a lathe) and chemical. A hydride method is commonly used; the pit is cut in half, a half of the pit is laid inside-down above a funnel and a crucible in a sealed apparatus, and some amount of hydrogen is injected into the space. The hydrogen reacts with plutonium producing plutonium hydride that falls to the funnel and the crucible, where it is melted while releasing the hydrogen. Plutonium can also be converted to a nitride or oxide. Practically all plutonium can be removed from a pit this way. The process is complicated by the wide variety of the constructions and alloy compositions of the pits, and the existence of composite uranium-plutonium pits. The weapon-grade plutonium also has to be blended with other materials to alter its isotopic composition enough to hinder its reuse in weapons.
References
- ^ "Restricted Data Declassification Decisions from 1945 until Present" – "Fact that plutonium and uranium may be bonded to each other in unspecified pits or weapons."
- ^ http://hpschapters.org/snv/Taschner%2520Talk%2520Part%25201.pdf
- ^ John Clearwater (1999). U.S. nuclear weapons in Canada. Dundurn Press Ltd. p. 99. ISBN 1550023292.
- ^ nuclear-weapons.info. nuclear-weapons.info. Retrieved on 2010-02-08.
- ^ a b Len Ackland (1999). Making a real killing: Rocky Flats and the nuclear West. UNM Press. p. 75. ISBN 0826318770.
- ^ a b c d BREDL Southern Anti-Plutonium Campaign. Bredl.org (1995-08-22). Retrieved on 2010-02-08.
- ^ a b Nuclear Wastelands: A Global Guide to Nuclear Weapons Production and Its Health and Environmental Effects by Arjun Makhijani, Katherine Yih, MIT Press, 2000 ISBN 0-262-63204-7, p. 58
- ^ W88. Globalsecurity.org. Retrieved on 2010-02-08.
- ^ Joseph Masco (2006). The nuclear borderlands: the Manhattan Project in post-Cold War New Mexico. Princeton University Press. p. 266. ISBN 0691120773.
- ^ Joseph Cirincione (2008). Bomb Scare: The History and Future of Nuclear Weapons. Columbia University Press. p. 184. ISBN 0231135114.
- ^ "BREDL Southern Anti-Plutonium Campaign". Bredl.org. 1995-08-22. Retrieved 2010-02-21.
- ^ Grant Elliott, MIT Program in Science, Technology, and Society, US Nuclear Weapon Safety and Control 2005
- ^ a b Making a Real Killing: Rocky Flats and the Nuclear West, Len Ackland, p. 131, UNM Press, 2002 ISBN 0-8263-2798-2
- ^ Permissive Action Links. Cs.columbia.edu. Retrieved on 2010-02-08.
- ^ Fire Resistant Pits. ArmsControlWonk (2007-09-24). Retrieved on 2010-02-08.
- ^ "U.S. Strategic Nuclear Forces". Bulletin of the Atomic Scientists. 54 (1). Jan 1998.
- ^ a b Nathan E. Busch (2004). No end in sight: the continuing menace of nuclear proliferation. University Press of Kentucky. p. 51. ISBN 0813123232.
- ^ a b Sidney D. Drell, Sidney David Drell (2007). Nuclear weapons, scientists, and the post-Cold War challenge: selected papers on arms control. World Scientific. p. 151. ISBN 9812568964.
- ^ M. V. Ramana (2003). Prisoners of the nuclear dream. Orient Blackswan. p. 19. ISBN 8125024778.
- ^ Physics of societal issues: calculations on national security, environment, and energy. Springer. 2007. p. 177. ISBN 0387955607.
- ^ Bruce D. Larkin (1996). Nuclear designs: Great Britain, France, and China in the global governance of nuclear arms. Transaction Publishers. p. 272. ISBN 1560002395.
- ^ "Restricted Data Declassification Decisions from 1946 until Present"
- ^ a b Fissionable Materials section of the Nuclear Weapons FAQ, Carey Sublette. Retrieved Sept 23, 2006.
- ^ Michael E. O'Hanlon (2009). The Science of War: Defense Budgeting, Military Technology, Logistics, and Combat Outcomes. Princeton University Press. p. 221. ISBN 0691137021.
- ^ From Polaris to Trident: the development of US Fleet ballistic missile technology by Graham Spinardi, Volume 30 of Cambridge studies in international relations, Cambridge University Press, 1994 ISBN 0-521-41357-5, p. 204
- ^ The Arms Control, Disarmament, and Military Security Dictionary by Jeffrey M. Elliot, Robert Reginald, Wildside Press, 2007 ISBN 1-4344-9052-1
- ^ Ageing studies and lifetime extension of materials by Leslie G. Mallinson, Springer, 2001 ISBN 0-306-46477-2
- ^ Texas Radiation Online - Pantex Plutonium Plant - Nuclear Weapons. Texasradiation.org. Retrieved on 2010-02-08.
- ^ URA Accomplishments. Uraweb.org. Retrieved on 2010-02-08.
- ^ Appendix 8A. Russian and US technology development in support of nuclear warhead and material transparency initiatives by Oleg Bukharin
- ^ NWNM | U.S. Plutonium Pit Manufacturing. Nukewatch.org. Retrieved on 2010-02-08.
- ^ Susan Willett, United Nations Institute for Disarmament Research (2003). Costs of disarmament-disarming the costs: nuclear arms control and nuclear rearmament. United Nations Publications. p. 68. ISBN 9290451548.
- ^ National Academy of Sciences (2005). Monitoring nuclear weapons and nuclear-explosive materials. National Academies Press. p. 117. ISBN 0309095972.