Langbahn Team – Weltmeisterschaft

Reelin: Difference between revisions

Content deleted Content added
fix the inner link
Line 627: Line 627:
[[de:Reelin]]
[[de:Reelin]]
[[el:Ρεελίνη]]
[[el:Ρεελίνη]]
[[eo:Rilino]]
[[es:Reelina]]
[[es:Reelina]]
[[fr:Reelin]]
[[fr:Reelin]]

Revision as of 05:18, 23 December 2009

Template:PBB Reelin is a protein that helps regulate processes of neuronal migration and positioning in the developing brain. Besides this important role in early development, reelin continues to work in the adult brain. It modulates the synaptic plasticity by enhancing the induction and maintenance of long-term potentiation.[1][2] It also stimulates dendrite[3] and dendritic spine[4] development and regulates the continuing migration of neuroblasts generated in adult neurogenesis sites like subventricular and subgranular zones. It is found not only in the brain, but also in the spinal cord, blood, and other body organs and tissues.

Reelin has been suggested to be implicated in pathogenesis of several brain diseases. Significantly lowered expression of the protein have been found in schizophrenia and psychotic bipolar disorder, but the cause of it is uncertain as studies show that psychotropic medication itself affects RELN expression and the epigenetic hypothesis aimed at explaining the changed levels[5] has received some contradictory evidence.[6][7] Total lack of reelin causes a form of lissencephaly. Reelin also may play a role in Alzheimer's disease, temporal lobe epilepsy, and autism.

Overview

Reelin's name comes from the abnormal reeling gait of reeler mice,[8] which were later found to have a deficiency of this brain protein and were homozygous for mutation of the RELN gene. The primary phenotype associated with loss of reelin function is a failure of neuronal positioning throughout the developing CNS. The mice heterozygous for the reelin gene, while having little neuroanatomical defects, display the endophenotypic traits linked to psychotic disorders.[9]

Discovery

Video: the reeler mice mutants, first described in 1951 by D.S.Falconer, were later found to lack reelin protein.
Normal and Reeler mice brain slices.

Mutant mice provide insight into the underlying molecular mechanisms of the development of the CNS. Useful spontaneous mutations were first identified by scientists interested in motor behavior, and it proved relatively easy to screen littermates for mice that showed difficulties moving around the cage. A number of such mice were found and given descriptive names such as reeler, weaver, lurcher, nervous, and staggerer.

The "reeler" mouse was first described in the 1951 by D.S.Falconer[8] in Edinburgh University as a spontaneous variant arising in a colony of mice maintained by geneticist Charlotte Auerbach.[citation needed] Histopathological studies in the 1960s revealed that the cerebellum in reeler mice is dramatically decreased in size and the normal laminar organization found in several brain regions is disrupted.[10] The 1970s brought the discovery of cellular layers inversion in the mice neocortex,[11] which attracted more attention to the reeler mutation.

In 1994 a new allele of reeler was obtained by insertional mutagenesis (Miao et al., 1994).[12] This provided the first molecular marker of the locus, permitting the gene, RELN gene to be mapped to chromosome 7q22 and subsequently cloned and identified (D'Arcangelo et al., 1995).[13] Japanese scientists at Kochi Medical School successfully raised antibodies against normal brain extracts in reeler mice, later these antibodies were found to be specific monoclonal antibody for reelin, and were termed CR-50 (Cajal-Rezius marker 50).[14] They noted that CR-50 reacted specifically with Cajal-Retzius neurons, whose functional role was unknown until then.

The Reelin receptors, apolipoprotein E receptor 2 (ApoER2) and very-low-density lipoprotein receptor (VLDLR), were discovered by Trommsdorff, Herz and colleagues, who initially found that the cytosolic adaptor protein Dab1 interacts with the cytoplasmic domain of LDL receptor family members.[15] They then went on to show that the double knockout mice for ApoER2 and VLDLR, which both interact with Dab1, had cortical layering defects similar to those in reeler.[16]

The downstream pathway of Reelin was further clarified using other mutant mice, including yotari and scrambler. These mutants have phenotypes similar to that of reeler but have no mutation in reelin. It was then demonstrated that the mouse disabled homologue 1 (Dab1) gene is responsible for the phenotypes of these mutant mice, as Dab1 protein was absent (yotari) or only barely (scrambler) detectable in these mutants.[17] Targeted disruption of Dab1 also caused a phenotype similar to that of reeler. Pinpointing the DAB1 as a pivotal regulator of the reelin signaling cascade started the tedious process of deciphering its complex interactions.

There followed a series of speculative reports linking reelin's genetic variation and interactions to schizophrenia, Alzheimer's disease, autism and other highly complex dysfunctions. These and other discoveries, coupled with the perspective of unraveling the evolutionary changes that allowed for the creation of human brain, highly intensified the research. As of 2008, some 13 years after the gene coding the protein was discovered, hundreds of scientific articles address the multiple aspects of its structure and functioning.[18] These aspects have been summarized by some of the researchers in a book called "Reelin Glycoprotein: Structure, Biology and Roles in Health and Disease" that saw print in 2008.[19]

Tissue distribution and secretion

File:Reeler ontogenesis.png
Corticogenesis in a normal (left) and reeler (right) mice

Studies show that Reelin is absent from synaptic vesicles and is secreted via constitutive secretory pathway, being stored in Golgi secretory vesicles.[20] Reelin's release rate is not regulated by depolarization, but strictly depends on its synthesis rate. This relationship is similar to that reported for the secretion of other ECM proteins.

During the brain development, reelin is secreted in the cortex and hippocampus by Cajal-Retzius cells, Cajal cells, and Retzius cells.[21] Reelin-expressing cells in the prenatal and early postnatal brain are predominantly found in the marginal zone (MZ) of the cortex and in the temporary subpial granular layer (SGL), which is manifested to the highest extent in human,[22] and in the hippocampal stratum lacunosum-moleculare and the upper marginal layer of the dentate gyrus.

In the developing cerebellum, Reelin is expressed first in the external granule cell layer (EGL) before the granule cell migration to the internal granule cell layer (IGL).[23]

Peaking just after the birth, the synthesis of reelin then goes down sharply and becomes more diffuse compared with the distinctly laminar expression in the developing brain. In the adult brain, Reelin is expressed by GABA-ergic interneurons of the cortex and glutamatergic cerebellar neurons,[24] and by the few extant Cajal-Retzius cells. Among GABAergic interneurons, Reelin seems to be detected predominantly in those expressing calretinin and calbindin, like bitufted, horizontal, and Martinotti cells, but not parvalbumin-expressing cells, like chandelier or basket neurons.[25][26] In the white matter, a minute proportion of interstitial neurons has also been found to stain positive for reelin expression.[27] Outside the brain, reelin is found in adult mammalian blood, liver, pituitary pars intermedia, and adrenal chromaffin cells.[28] In the liver, reelin is localized in hepatic stellate cells.[29] The expression of Reelin increases when the liver is damaged, and returns to normal following its repair.[30]

Schema of the Reelin protein

In the eyes reelin is secreted by retinal ganglion cells and is also found in the endothelial layer of the cornea.[31] Similar to liver, the expression increases after an injury.

The protein is also produced by the odontoblasts, cells at the margins of the dental pulp. Reelin is found here both during odontogenesis and in the mature tooth.[32] Some authors suggest that odontoblasts play an additional role as sensory cells able to transduce pain signals to the nervous endings.[33] According to the hypothesis, reelin participates in the process[19] by enhancing the contact between odontoblasts and the nerve terminals.[34]

Structure

The structure of two murine reelin repeats as revealed by X-ray crystallography and electron tomography. Yasui et al., 2007,[35] PDB: 2E26​.

Reelin is a secreted extracellular matrix glycoprotein composed of 3461 amino acids with a relative molecular mass of 388 kDa; its structural features allow for an enzymatic activity, making it a serine protease.[36] Murine RELN gene consists of 65 exons spanning approximately 450 kb.[37] One exon, coding for only two amino acids near the protein's C-terminal, undergoes alternative splicing, but the exact functional impact of this is unknown.[19] Two transcription initiation sites and two polyadenilation sites are identified in the gene structure.[37]

The Reelin protein starts with a signaling peptide 27 amino acids in length, followed by a region bearing similarity to F-spondin, marked as "SP" on the scheme, and by a region unique to reelin, marked as "H". Next comes 8 repeats of 300-350 amino acids. These are called reelin repeats and have an EGF motif at their center, dividing each repeat into two subrepeats, A and B. Despite this interruption, the two subdomains make direct contact, resulting in a compact overall structure.[38]

The final Reelin domain contains a highly basic and short C-terminal region (CTR, marked "+") with a length of 32 amino acids. This region is highly conserved, being 100% identical in all investigated mammals. It was thought that CTR is necessary for reelin secretion, because Orleans reeler mutation, which lacks a part of 8th repeat and the whole CTR, is unable to secrete the misshaped protein, leading to its concentration in cytoplasm. However, one recent study has shown that the CTR is not essential for secretion, which is most probably hindered then reelin is cut along one of the repeats.[39]

Reelin is cleaved in vivo at two sites located after domains 2 and 6 - approximately between repeats 2 and 3 and between repeats 6 and 7, resulting in the production of three fragments.[40] This splitting does not decrease the protein's activity, as constructs made of the predicted central fragments (repeats 3–6) bind to lipoprotein receptors, trigger Dab1 phosphorylation and mimic functions of reelin during cortical plate development.[41] Moreover, the processing of reelin by embryonic neurons may be necessary for proper corticogenesis.[42]

Function

As they travel through the rostral migratory stream, neuroblasts are held together, probably in part by thrombospondin-1's binding to the reelin receptors ApoER2 and VLDLR.[43] As they arrive to the destination, the groups are dispersed by reelin and cells strike out on their individual paths. A fragment of an illustration from Lennington et al., 2003.[44]

The primary functions of Reelin are the regulation of corticogenesis and neuronal cell positioning in the prenatal period, but the protein is also implicated in a number of other processes, and the research is ongoing.

Reelin is found in numerous tissues and organs, and one could roughly subdivide its functional roles by the time of expression and by localisation of its action.

A number of non-nervous tissues and organs express reelin in the developing organism, with the expression sharply going down after the organ had been formed. The role of the protein here is largely unexplored, because the knockout mice show no major pathology in these organs. In the adult organism the non-neural expression is much less widespread, but goes up sharply when some organs are injured.[30][31] The exact function of reelin upregulation following an injury is still being researched.

Reelin controls the direction of radial glia growth. A fragment of an illustration from Nomura T. et al., 2008.[45] Reelin-expressing cells (red) on C stimulate the growth of green glial fibers, while on B, where the red cells do not express reelin, radial glia is more disarrayed.

On the other hand, reelin's role in the growing CNS is more important and more explored. It promotes the differentiation of progenitor cells into radial glia and affects the orientation of its fibers, which serve as the guides for the migrating neuroblasts.[46] The position of reelin-secreting cell layer is important, because the fibers orient themselves in the direction of its higher concentration.[45] For example, reelin regulates the development of layer-specific connections in hippocampus and entorhinal cortex.[47][48]

Mammalian corticogenesis is another process where reelin plays a major role. In this process the temporary layer called preplate is split into the marginal zone on the top and subplate below, and the space between them is populated by neuronal layers in the inside-out pattern. Such an arrangement, where the newly created neurons pass through the settled layers and position themselves one step above, is a distinguishing feature of mammalian brain, in contrast to the evolutionary older reptile cortex, in which layers are positioned in an "outside-in" fashion. When reelin is absent, like in the mutant reeler mouse, the order of cortical layering becomes roughly inverted, with younger neurons finding themselves to be unable to pass the settled layers. Subplate neurons fail to stop and invade the upper most layer, creating the so-called superplate in which they mix with Cajal-Retzius cells and some cells normally destined for the second layer.

Increased reelin expression changes the morphology of migrating neurons: unlike the round neurons with short branches (C) they assume bipolar shape (D) and attach themselves (E) to the radial glia fibers that are extending in the direction of reelin-expressing cells. Nomura T. et al., 2008.[45]

There is no agreement concerning the role of reelin in the proper positioning of cortical layers. The original hypothesis, that the protein is a stop signal for the migrating cells, is supported by its ability to induce the dissociation,[49] its role in asserting the compact granule cell layer in the hippocampus, and by the fact that migrating neuroblasts evade the reelin-rich areas. But an experiment in which murine corticogenesis went normally despite the malpositioned reelin secreting layer,[50] and lack of evidence that reelin affects the growth cones and leading edges of neurons, caused some additional hypotheses to be proposed. According to one of them, reelin makes the cells more susceptible to some yet undescribed positional signaling cascade.

Reelin may also ensure correct neuronal positioning in the spinal cord: according to one study, location and level of its expression affects the movement of sympathetic preganglionic neurons.[51]

The protein is thought to act on migrating neuronal precursors and thus controls correct cell positioning in the cortex and other brain structures. The proposed role is one of a dissociation signal for neuronal groups, allowing them to separate and go from tangential chain-migration to radial individual migration.[49] Dissociation detaches migrating neurons from the glial cells that are acting as their guides, converting them into individual cells that can strike out alone to find their final position.

Top: Representative image of somatic reelin immunoreactivities found in 12 day-in-vitro hippocampal neurons. Bottom: reelin immunofluorescence (red) overlaid with MAP2 counterstain (green). A fragment of an illustration from Campo et al., 2009.[52]

In the adult nervous system, reelin plays an eminent role at the two most active neurogenesis sites, the subventricular zone and the dentate gyrus. In some species, the neuroblasts from the subventricular zone migrate in chains in the rostral migratory stream (RMS) to reach the olfactory bulb, where reelin dissociates them into individual cells that are able to migrate further individually. They change their mode of migration from tangential to radial, and begin using the radial glia fibers as their guides. There are studies showing that along the RMS itself the two receptors, ApoER2 and VLDLR, and their intracellular adapter DAB1 function independently of Reelin,[53] most likely by the influence of a newly proposed ligand, thrombospondin-1.[43] In the adult dentate gyrus, reelin provides guidance cues for new neurons that are constantly arriving to the granule cell layer from subgranular zone, keeping the layer compact.[54]

Reelin also plays an important role in the adult brain by modulating cortical pyramidal neuron dendritic spine expression density, the branching of dendrites, and the expression of long-term potentiation[2] as its secretion is continued diffusely by the GABAegric cortical interneurons those origin is traced to the medial ganglionic eminence.

According to scientists working in France,[55] reelin takes part in the developmental change of NMDA receptor configuration, increasing mobility of NR2B-containing receptors and thus decreasing the time they spend at the synapse.[56][57] They believe that this may be a part of the mechanism behind the "NR2B-NR2A switch" that is observed[58] in the brain during its postnatal development. In 2009 a new study suggested that ongoing reelin secretion by GABAergic hippocampal neurons is necessary to keep NR2B-containing NMDA receptors at a low level.[52]

Evolutionary significance

Cajal-Retzius cells, as drawn by Cajal in 1891. The development of a distinct layer of these reelin-secreting cells played a major role in brain evolution.
Neuronal development: mammals (left) and avians (right) have different patterns of reelin expression (pink). Nomura T. et al., 2008.[45]

Reelin-DAB1 interactions could have played a key role in the structural evolution of the cortex that evolved from a single layer in the common amniote predecessor into multiple-layered cortex of contemporary mammals.[59] Research shows that reelin expression goes up as the cortex becomes more complex, reaching the maximum in the human brain in which the reelin-secreting Cajal-Retzius cells have significantly more complex axonal arbour.[60] Reelin is present in the telencephalon of all the vertebrates studied so far, but the pattern of expression is widely differential. For example, in zebra fish there are no Cajal-Retzius cells and the protein is being secreted by other neurons.[61][62] These cells do not form a dedicated layer in amphibians, and radial migration in their brains is very weak.[61]

As the cortex becomes more complex and convoluted, migration along the radial glia fibers becomes more important for the proper lamination. The emergence of a distinct reelin-secreting layer is thought to play an important role in this evolution.[45] There are conflicting data concerning the importance of this layer,[50] and these are explained in the literature either by the existence of an additional signaling positional mechanism that interacts with the reelin cascade,[50] or by the assumption that mice that are used in such experiments have redundant secretion of reelin[63] compared with more localized synthesis in the human brain.[22]

Cajal-Retzius cells, most of which disappear around the time of birth, coexpress reelin with the HAR1 gene that is thought to have undergone the most significant evolutionary change in humans compared with chimpanzee, being the most «evolutionary accelerated» of the genes from the human accelerated regions discovered in 2006.[64] There is evidence of an ongoing evolution in the reelin pathway: DAB1 gene variant was described in 2007 that has spread recently in the Chinese but not in another populations.[65][66]<

Mechanism of action

The main reelin signaling cascade (ApoER2 and VLDLR) and its interaction with LIS1. Zhang et al., 2008[67]
SFK: Src family kinases.
JIP: JNK-interacting protein 1

The main action of reelin is apparently conducted through the two members of low density lipoprotein receptor gene family, VLDLR and the ApoER2. It also has been shown that alpha-3-beta-1 integrin receptor binds the N-terminal region of reelin, a site distinct from the region of reelin shown to associate with VLDLR/ApoER2.[68] The proposal that the protocadherin CNR1 behaves as a Reelin receptor[69] has been disproven.[41]

Reelin receptors are present on both neurons and glial cells, with one study showing that the radial glia express the same amount of ApoER2 but being ten times less rich in VLDLR.[46] One study suggests that beta-1 integrin receptors on glial cells play more important role in neuronal layering than the same receptors on the migrating neuroblasts.[70] The intracellular adaptor DAB1 binds to the VLDLR and ApoER2 through an NPxY motif and is involved in transmission of Reelin signals through these lipoprotein receptors. It becomes phosphorylated by Src[71] and Fyn[72] kinases and apparently stimulates the actin cytoskeleton to change its shape, affecting the proportion of integrin receptors on the cell surface, which leads to the change in adhesion. Phosphorylation of DAB1 leads to its ubiquitination and subsequent degradation, and this explains the hightened levels of DAB1 in the absence of reelin.[73] Such negative feedback is thought to be important for proper cortical lamination.[74] Activated by two antibodies, VLDLR and ApoER2 cause DAB1 phosphorylation but seemingly without the subsequent degradation and without rescuing the reeler phenotype, and this may indicate that a part of the signal is conducted independently of DAB1.[41]

Reelin stimulates the progenitor cells to differentiate into radial glia, inducing the expression of radial glial marker BLBP by affecting the NOTCH1 cascade. A fragment of an illustration from Keilani et al., 2008.[75]

A protein having an important role in lissencephaly and accordingly called LIS1 (PAFAH1B1), was shown to interact with the intracellular segment of VLDLR, thus reacting to the activation of reelin pathway.[67]

The two main reelin receptors seem to have slightly different roles: according to one study, VLDLR conducts the stop signal, while ApoER2 is essential for the migration of late-born neocortical neurons.[76]

Reelin molecules have been shown[77][78] to form a large protein complex, a disulfide-linked homodimer. If the homodimer fails to form, efficient tyrosine phosphorylation of DAB1 in vitro fails. Moreover, the two main receptors of reelin are able to form clusters[79] that most probably play a major role in the signaling, causing the intracellular adaptor DAB1 to dimerize or oligomerize in its turn. Such clustering has been shown in the study to activate the signaling chain even in the absence of Reelin itself.[79]

On the other hand, reelin itself can cut the peptide bonds holding other proteins together, being a serine protease,[36] and this may affect the cellular adhesion and migration processes.

Reelin-dependent strengthening of long-term potentiation is caused by ApoER2 interaction with NMDA receptor. This interaction happens when ApoER2 has a region coded by exon 19. ApoER2 gene is alternatively spliced, with the exon 19-containing variant more actively produced during periods of activity.[80] According to one study, the hippocampal reelin expression rapidly goes up when there is need to store a memory, as demethylases open up the RELN gene.[81]

The activation of dendrite growth by reelin is apparently conducted through Src family kinases and is dependent upon the expression of Crk family proteins,[82] consistent with the interaction of Crk and CrkL with tyrosine-phosphorylated Dab1.[83] Moreover, a Cre-loxP recombination mouse model that lacks Crk and CrkL in most neurons[84] was reported to have the reeler phenotype, indicating that Crk/CrkL lie between DAB1 and Akt in the reelin signaling chain.

One study shows that reelin somehow activates the signaling cascade of Notch-1, inducing the expression of FABP7 and prompting progenitor cells to assume radial glial phenotype.[75]

One study shows that proper corticogenesis in vivo is highly dependent upon reelin being processed by embrionic neurons,[42] which are thought to secrete some as yet unidentified metalloproteinases that free the central signal-competent part of the protein. Some other unknown proteolytic mechanisms may also play a role.[85] It is supposed that full-sized reelin stucks to the extracellular matrix fibers on the higher levels, and the central fragments, as they are being freed up by the breaking up of reelin, are able to permeate into the lower levels.[42] It is possible that as neuroblasts reach the higher levels they stop their migration either because of the heightened combined expression of all forms of reelin, or due to the peculiar mode of action of the full-sized reelin molecules and its homodimers.[19]

As members of lipoprotein receptor superfamily, both VLDLR and ApoER2 have in their structure an internalization domain called NPxY motif. After binding to the receptors reelin is internalized by endocytosis, and one study suggests that the N-terminal fragment of the protein is re-secreted.[86] According to another study, this fragment may serve postnatally to prevent apical dendrites of cortical layer II/III pyramidal neurons from overgrowth, acting via a pathway independent of canonical reelin receptors.[87]

One group reports that reelin signaling leads to phosphorylation of actin-interacting protein cofilin 1 at ser3; this may stabilize the actin cytoskeleton and anchor the leading processes of migrating neuroblasts, preventing their further growth.[88][89]

Interaction with Cdk5

Cyclin-dependent kinase 5 (Cdk5), a major regulator of neuronal migration and positioning, is known to phosphorylate DAB1[90][91][92] and other cytosolic targets of reelin signaling, such as Tau,[93] which could be activated also via reelin-induced deactivation of GSK3B,[94] and NUDEL,[95] associated with Lis1, one of the DAB1 targets. LTP induction by reelin in hippocampal slices fails in p35 knockouts.[96] P35 is a key Cdk5 activator, and double p35/Dab1, p35/RELN, p35/ApoER2, p35/VLDLR knockouts display increased neuronal migration deficits,[96][97] indicating a synergistic action of reelin->ApoER2/VLDLR->DAB1 and p35/p39->Cdk5 pathways in the normal corticogenesis.

Possible pathological role

Lissencephaly

Disruptions of the RELN gene are considered to be the cause of the rare form of lissencephaly with cerebellar hypoplasia called Norman-Roberts syndrome.[98][99] The mutations disrupt splicing of RELN cDNA, resulting in low or undetectable amounts of reelin protein. The phenotype in these patients was characterized by hypotonia, ataxia, and developmental delay, with lack of unsupported sitting and profound mental retardation with little or no language development. Seizures and congenital lymphedema were also present. A novel chromosomal translocation causing the syndrome was described in 2007.[100] The mutations affecting reelin in human are usually associated with consanguineous marriage.

Schizophrenia

Reduced expression of reelin and its mRNA levels in the brains of schizophrenia sufferers had been reported in 1998>[101] and 2000[102] and independently confirmed in the postmortem studies of hippocampus,[103] cerebellum,[104] basal ganglia,[105] and in the cortex studies.[106][107] The reduction may reach up to 50% in some brain regions and is coupled with reduced expression of GAD-67 enzyme,[104] which catalyses the transition of glutamate to GABA. Blood levels of reelin and its isoforms are also altered in schizophrenia, along with mood disorders, according to one study.[108] Reduced reelin mRNA prefrontal expression in schizophrenia was found to be the most statistically relevant disturbance found in the multicenter study conducted in 14 separate laboratories in 2001 by Stanley Foundation Neuropathology Consortium.[109]

Epigenetic hypermethylation of DNA in schizophrenia patients is proposed as a cause of the reduction,[110][111] in agreement with the observations dating from the 1960s that administration of methionine to schizophrenic patients results in a profound exacerbation of schizophrenia symptoms in sixty to seventy percent of patients.[112][113][114][115] The proposed mechanism is a part of the "epigenetic hypothesis for schizophrenia pathophysiology" formulated by a group of scientists in 2008 (D.Grayson; A.Guidotti; E.Costa).[5][116] A postmortem study comparing DNMT1 and Reelin mRNA expression in cortical layers I and V of schizophrenic patients and normal controls demonstrated that in the layer V both DNMT1 and Reelin levels were normal, while in the layer I DNMT1 was threefold higher, probably leading to the twofold decrease in the Reelin expression.[117] There is evidence that the change is selective, and DNMT1 is overexpressed in reelin-secreting GABAegric neurons but not in their glutamatergic neighbours.[118][119] Methylation inhibitors and histone deacetylase inhibitors, such as valproic acid, increase reelin mRNA levels,[120][121][122] while L-methionine treatment downregulates the phenotypic expression of reelin.[123] One study indicated the upregulation of histone deacetylase HDAC1 in the hippocampi of patients.[124] Histone deacetylases suppress gene promoters; hyperacetylation of hystones was shown in murine models to demethylate the promoters of both reelin and GAD67.[125] DNMT1 inhibitors in animals have been shown to increase the expression of both reelin and GAD67,[126] and both DNMT inhibitors and HDAC inhibitors shown in one study[127] to activate both genes with comparable dose- and time-dependence. As one study shows, SAM concentration in patients' prefrontal cortex is twice as high as in the cortices of non-affected people.[128] SAM, being a methyl group donor necessary for DNMT activity, could further shift epigenetic control of gene expression.

The factors mentioned above serve to corroborate the epigenetic hypothesis. But it is worth mentioning that in contrast with initial data, two recent studies have failed to confirm the RELN hypermethylation,[6][7] and psychotropic medication could in itself affect the reelin expression in the brain, as animal studies show (see below).

Other interesting findings probably linking reelin pathway to developmental hypotheses of schizophrenia are noted in the studies on mice that are either prenatally infected with influenza virus[129] or have their immune system activated artificially during pregnancy.[130] The Cajal-Retzius cells in the newborns secrete significantly less reelin despite keeping their expression of calretinin and nNos within normal range. These data run in parallel with the findings of increased risk of schizophrenia in humans after a prenatal infection during the second trimester.

Chromosome region 7q22 that harbours the RELN gene is associated with schizophrenia,[131] and the gene itself was associated with the disease in a large study that found the polymorphism rs7341475 to increase the risk of the disease in women, but not in men. The women that have the SNP are about 1.4 times more likely to get ill, according to the study.[132] Allelic variations of RELN have also been correlated with working memory, memory and executive functioning in nuclear families where one of the members suffers from schizophrenia.[131] The association with working memory was later replicated.[133] In one small study, nonsynonymous polymorphism Val997Leu of the gene was associated with left and right vetricular enlargement in patients.[134]

One study showed that patients have decreased levels of one of reelin receptors, VLDLR, in the peripheral lymphocytes.[135] After six months of antipsychotic therapy the expression went up; according to authors, peripheral VLRLR levels may serve as a reliable peripheral biomarker of schizophrenia.[135]

Considering the role of reelin in promoting dendritogenesis,[3][82] suggestions were made that the localized dendritic spine deficit observed in schizophrenia [136][137] could be in part connected with the downregulation of reelin.[138][139]

Reelin pathway could also be linked to schizophrenia and other psychotic disorders through its interaction with risk genes. One example is the neuronal transcription factor NPAS3, disruption of which is linked to schizophrenia[140] and learning disability. Knockout mice lacking NPAS3 or the similar protein NPAS1 have significantly lower levels of reelin;[141] the precise mechanism behind this is unknown. Another example is the schizophrenia-linked gene MTHFR, with murine knockouts showing decreased levels of reelin in the cerebellum.[142] Along the same line, it is worth noting that the gene coding for the subunit NR2B that is presumably affected by reelin in the process of NR2B->NR2A developmental change of NMDA receptor composition,[57] stands as one of the strongest risk gene candidates.[143] Another shared aspect between NR2B and RELN is that they both can be regulated by the TBR1 transcription factor.[144]

The heterozygous reeler mouse, which is haploinsufficient for the RELN gene, shares several neurochemical and behavioral abnormalities with schizophrenia and bipolar disorder,[145] but is considered not suitable for use as a genetic mouse model of schizophrenia.[146]

Bipolar disorder

Decrease in RELN expression with concurrent upregulation of DNMT1 is typical of bipolar disorder with psychosis, but is not characteristic of patients with major depression without psychosis, which could speak of specific association of the change with psychoses.[102] One study suggests that unlike in schizophrenia, such changes are found only in the cortex and do not affect the deeper structures in psychotic bipolar patients, as their basal ganglia were found to have the normal levels of DNMT1 and subsequently both the reelin and GAD67 levels were within the normal range.[105]

In a genetic study conducted in 2009, preliminary evidence requiring further DNA replication suggested that variation of the RELN gene (SNP rs362719) may be associated with susceptibility to bipolar disorder in women.[147]

Autism

Autism is a neurodevelopmental disorder that is generally believed to be caused by mutations in several locations, likely triggered by environmental factors. The role of reelin in autism is not decided yet.

Reelin was originally implicated in a study finding associations between autism and a polymorphic GGC/CGG repeat preceding the 5' ATG initiator codon of the RELN gene in an Italian population. Longer triplet repeats in the 5’ region were associated with an increase in autism susceptibility.[148] However, another study of 125 multiple-incidence families and 68 single-incidence families found no significant difference between the length of the polymorphic repeats in affected and controls. Although, using a family based association test larger reelin alleles were found to be transmitted more frequently than expected to affected children.[149] An additional study examining 158 subjects with German lineage likewise found no evidence of triplet repeat polymorphisms associated with autism.[150] And the largest study consisting of 395 families found no association between autistic subjects and the CGG triplet repeat as well as the allele size when compared to age of first word.[151]

Also, RELN is located at chromosome locus 7q22, which is associated with susceptibility with autism, and reduced levels of Reelin are found in autistic brains examined postmostem. More recent reports found conflicting results, with some finding an association between RELN and autism, and others not. Studies of transgenic mice have been suggestive of an association, but not definitive.[152]

Temporal lobe epilepsy: granule cell dispersion

Decreased reelin expression in the hippocampal tissue samples from patients with temporal lobe epilepsy was found to be directly correlated with the extent of granule cell dispersion (GCD), a major feature of the disease that is noted in 45%-73% of patients.[153][154] The dispersion, according to a small study, is associated with the RELN promoter hypermethylation.[155] According to one study, prolonged seizures in a rat model of mesial temporal lobe epilepsy have led to the loss of reelin-expressing interneurons and subsequent ectopic chain migration and aberrant integration of newborn dentate granule cells. Without reelin, the chain-migrating neuroblasts failed to detach properly.[156] Moreover, in a kainate-induced mouse epilepsy model, exogenous reelin had prevented GCD, according to one study.[157]

Alzheimer's disease

According to one study, reelin expression and glycosylation patterns are altered in Alzheimer's disease. In the cortex of the patients, reelin levels were 40% higher compared with controls, but the cerebellar levels of the protein remain normal in the same patients.[158] This finding is in agreement with an earlier study showing the presence of Reelin associated with amyloid plaques in a transgenic AD mouse model.[159] A large genetic study of 2008 showed that RELN gene variation is associated with an increased risk of Alzheimer's disease in women.[160] The number of reelin-producing Cajal-Retzius cells is significantly decreased in the first cortical layer of patients.[161][162] Reelin has been shown to interact with amyloid precursor protein,[163] and, according to one in-vitro study, is able to counteract the abeta-induced dampening of NMDA-receptor activity.[164] Some authors consider the reelin pathway to be a link between the Alzheimer's disease and schizophrenia.[165]

Cancer

DNA methylation patterns are often changed in tumours, and RELN gene could be affected: according to one study, in the pancreatic cancer the expression is suppressed, along with other reelin pathway components[166] In the same study, cutting the reelin pathway in cancer cells that still expressed reelin resulted in increased motility and invasiveness. On the contrary, in prostate cancer the RELN expression is excessive and correlates with Gleason score.[167] Retinoblastoma presents another example of RELN overexpression.[168]

Other conditions

One genome-wide association study indicates a possible role for RELN gene variation in otosclerosis, an abnormal growth of bone of the middle ear.[169] In a statistical search for the genes that are differentially expressed in the brains of cerebral malaria-resistant versus cerebral malaria-susceptible mice, Delahaye et al. detected a significant upregulation of both RELN and DAB1 and speculated on possible protective effects of such over-expression.[170]

Factors affecting reelin expression

Increased cortical reelin expression in the pups of "High LG" (licking and grooming) rats. A figure from Smit-Rigter et al., 2009[171]

The expression of reelin is controlled by a number of factors besides the sheer number of Cajal-Retzius cells. For example, TBR1 transcription factor regulates RELN along with other T-element-containing genes.[144] On a higher level, increased maternal care was found to correlate with reelin expression in rat pups; such correlation was reported in hippocampus[172] and in the cortex.[171] According to one report, prolonged exposure to corticosterone significantly decreased reelin expression in murine hippocampi, a finding possibly pertinent to the hypothetical role of corticosteroids in depression.[173] One small postmortem study has found increased methylation of RELN gene in the neocortex of persons past their puberty compared with those that had yet to enter the period of maturation.[174]

Psychotropic medication

As reelin is being implicated in a number of brain disorders and its expression is usually measured posthumously, assessing the possible medication effects is important.

According to the epigenetic hypothesis, drugs that shift the balance in favour of demethylation have a potential to alleviate the proposed methylation-caused downregulation of RELN and GAD67. In one study, clozapine and sulpiride but not haloperidol and olanzapine were shown to increase the demethylation of both genes in mice pretreated with l-methionine.[175] Valproic acid, a histone deacetylase inhibitor, when taken in combination with antipsychotics, is proposed to have some benefits. But there are studies conflicting the main premise of the epigenetic hypothesis, and a study by Fatemi et al. shows no increase in RELN expression by valproic acid; that indicates the need for further investigation.

Fatemi et al. conducted the study in which RELN mRNA and reelin protein levels were measured in rat prefrontal cortex following a 21-day of intraperitoneal injections of the following drugs:[19]

Reelin expression Clozapine Fluoxetine Haloperidol Lithium Olanzapine Valproic Acid
protein
mRNA

In 2009 Fatemi et al. published the more detailed work on rats using the same medication. Here, cortical expression of several participants (VLDLR, DAB1, GSK3beta) of the signaling chain was measured besides reelin itself, and also the expression of GAD65 and GAD67.[176]

Interactions

Reelin has been shown to interact with Low density lipoprotein receptor-related protein 8.[177][178]

References

  1. ^ Weeber EJ, Beffert U, Jones C; et al. (2002). "Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning". J. Biol. Chem. 277 (42): 39944–52. doi:10.1074/jbc.M205147200. PMID 12167620. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)W
  2. ^ a b D'Arcangelo G (2005). "Apoer2: a reelin receptor to remember". Neuron. 47 (4): 471–3. doi:10.1016/j.neuron.2005.08.001. PMID 16102527. {{cite journal}}: Unknown parameter |month= ignored (help)
  3. ^ a b Niu S, Renfro A, Quattrocchi CC, Sheldon M, D'Arcangelo G (2004). "Reelin promotes hippocampal dendrite development through the VLDLR/ApoER2-Dab1 pathway". Neuron. 41 (1): 71–84. doi:10.1016/S0896-6273(03)00819-5. PMID 14715136. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  4. ^ Niu S, Yabut O, D'Arcangelo G (2008). "The Reelin signaling pathway promotes dendritic spine development in hippocampal neurons". Journal of Neuroscience. 28 (41): 10339–48. doi:10.1523/JNEUROSCI.1917-08.2008. PMID 18842893. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  5. ^ a b Grayson DR, Guidotti A, Costa E (2008-01-17). "Current Hypotheses". Schizophrenia Research Forum. schizophreniaforum.org. Retrieved 2008-08-23. {{cite web}}: Cite has empty unknown parameter: |coauthors= (help)CS1 maint: multiple names: authors list (link)
  6. ^ a b Tochigi M, Iwamoto K, Bundo M, Komori A, Sasaki T, Kato N, Kato T (2007). "Methylation Status of the Reelin Promoter Region in the Brain of Schizophrenic Patients". Biological Psychiatry. 63: 530. doi:10.1016/j.biopsych.2007.07.003. PMID 17870056.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  7. ^ a b Mill J, Tang T, Kaminsky Z, Khare T, Yazdanpanah S, Bouchard L, Jia P, Assadzadeh A, Flanagan J, Schumacher A, Wang SC, Petronis A (2008). "Epigenomic profiling reveals DNA-methylation changes associated with major psychosis". Am. J. Hum. Genet. 82 (3): 696–711. doi:10.1016/j.ajhg.2008.01.008. PMID 18319075.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. ^ a b Falconer DS (1951), "Two new mutants, 'trembler' and 'reeler', with neurological actions in the house mouse (Mus musculus L.)" (PDF), Journal of Genetics, 50 (2): 192–201, doi:10.1007/BF02996215 {{citation}}: Unknown parameter |month= ignored (help)
  9. ^ Tueting P, Doueiri MS, Guidotti A, Davis JM, Costa E (2006). "Reelin down-regulation in mice and psychosis endophenotypes". Neurosci Biobehav Rev. 30 (8): 1065–77. doi:10.1016/j.neubiorev.2006.04.001. PMID 16769115.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  10. ^ Hamburgh M (1963). "Analysis of the postnatal developmental effects of "reeler", a neurological mutation in mice. A study in developmental genetics". Dev. Biol. 19: 165–85. doi:10.1016/0012-1606(63)90040-X. PMID 14069672. {{cite journal}}: Unknown parameter |month= ignored (help)
  11. ^ Caviness VS (1976). "Patterns of cell and fiber distribution in the neocortex of the reeler mutant mouse". J. Comp. Neurol. 170 (4): 435–47. doi:10.1002/cne.901700404. PMID 1002868. {{cite journal}}: Unknown parameter |month= ignored (help)
  12. ^ Miao GG, Smeyne RJ, D'Arcangelo G, Copeland NG, Jenkins NA, Morgan JI, Curran T (1994). "Isolation of an allele of reeler by insertional mutagenesis". Proc. Natl. Acad. Sci. U.S.A. 91 (23): 11050–4. doi:10.1073/pnas.91.23.11050. PMC 45164. PMID 7972007. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  13. ^ D'Arcangelo G, Miao GG, Chen SC, Soares HD, Morgan JI, Curran T (1995). "A protein related to extracellular matrix proteins deleted in the mouse mutant reeler". Nature. 374 (6524): 719–23. doi:10.1038/374719a0. PMID 7715726. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  14. ^ Ogawa M, Miyata T, Nakajima K; et al. (1995). "The reeler gene-associated antigen on Cajal-Retzius neurons is a crucial molecule for laminar organization of cortical neurons". Neuron. 14 (5): 899–912. doi:10.1016/0896-6273(95)90329-1. PMID 7748558. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  15. ^ Trommsdorff M, Borg JP, Margolis B, Herz J (1998). "Interaction of cytosolic adaptor proteins with neuronal apolipoprotein E receptors and the amyloid precursor protein". J. Biol. Chem. 273 (50): 33556–60. PMID 9837937. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  16. ^ Trommsdorff M, Gotthardt M, Hiesberger T; et al. (1999). "Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2". Cell. 97 (6): 689–701. doi:10.1016/S0092-8674(00)80782-5. PMID 10380922. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  17. ^ Sheldon M, Rice DS, D'Arcangelo G; et al. (1997). "Scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice". Nature. 389 (6652): 730–3. doi:10.1038/39601. PMID 9338784. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  18. ^ "Reelin" mentioned in the titles of scientific literature - a search in the Google Scholar
  19. ^ a b c d e Hossein S. Fatemi, ed. (2008). Reelin Glycoprotein: Structure, Biology and Roles in Health and Disease. Springer. p. 444. ISBN 978-0-387-76760-4.
  20. ^ Lacor PN, Grayson DR, Auta J, Sugaya I, Costa E, Guidotti A (2000). "Reelin secretion from glutamatergic neurons in culture is independent from neurotransmitter regulation". Proc. Natl. Acad. Sci. U.S.A. 97 (7): 3556–61. doi:10.1073/pnas.050589597. PMC 16278. PMID 10725375. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  21. ^ Meyer G, Goffinet AM, Fairén A (1999). "What is a Cajal-Retzius cell? A reassessment of a classical cell type based on recent observations in the developing neocortex". Cereb. Cortex. 9 (8): 765–75. doi:10.1093/cercor/9.8.765. PMID 10600995. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  22. ^ a b Meyer G, Goffinet AM (1998). "Prenatal development of reelin-immunoreactive neurons in the human neocortex". J. Comp. Neurol. 397 (1): 29–40. doi:10.1002/(SICI)1096-9861(19980720)397:1<29::AID-CNE3>3.3.CO;2-7. PMID 9671277. {{cite journal}}: Unknown parameter |month= ignored (help) Cite error: The named reference "pmid9671277" was defined multiple times with different content (see the help page).
  23. ^ Schiffmann SN, Bernier B, Goffinet AM (1997). "Reelin mRNA expression during mouse brain development". Eur. J. Neurosci. 9 (5): 1055–71. doi:10.1111/j.1460-9568.1997.tb01456.x. PMID 9182958. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  24. ^ Pesold C, Impagnatiello F, Pisu MG; et al. (1998). "Reelin is preferentially expressed in neurons synthesizing gamma-aminobutyric acid in cortex and hippocampus of adult rats". Proc. Natl. Acad. Sci. U.S.A. 95 (6): 3221–6. doi:10.1073/pnas.95.6.3221. PMC 19723. PMID 9501244. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  25. ^ Alcántara S, Ruiz M, D'Arcangelo G; et al. (1 October 1998). "Regional and cellular patterns of reelin mRNA expression in the forebrain of the developing and adult mouse". J. Neurosci. 18 (19): 7779–99. PMID 9742148. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  26. ^ Pesold C, Liu WS, Guidotti A, Costa E, Caruncho HJ (1999). "Cortical bitufted, horizontal, and Martinotti cells preferentially express and secrete reelin into perineuronal nets, nonsynaptically modulating gene expression". Proc. Natl. Acad. Sci. U.S.A. 96 (6): 3217–22. doi:10.1073/pnas.96.6.3217. PMC 15922. PMID 10077664. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  27. ^ Suárez-Solá ML, González-Delgado FJ, Pueyo-Morlans M, Medina-Bolívar OC, Hernández-Acosta NC, González-Gómez M, Meyer G (2009). "Neurons in the white matter of the adult human neocortex". Front Neuroanat. 3: 7. doi:10.3389/neuro.05.007.2009. PMC 2697018. PMID 19543540.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  28. ^ Smalheiser NR, Costa E, Guidotti A; et al. (2000). "Expression of reelin in adult mammalian blood, liver, pituitary pars intermedia, and adrenal chromaffin cells". Proc. Natl. Acad. Sci. U.S.A. 97 (3): 1281–6. doi:10.1073/pnas.97.3.1281. PMC 15597. PMID 10655522. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  29. ^ Samama B, Boehm N (2005). "Reelin immunoreactivity in lymphatics and liver during development and adult life". Anat Rec a Discov Mol Cell Evol Biol. 285 (1): 595–9. doi:10.1002/ar.a.20202. PMID 15912522. {{cite journal}}: Unknown parameter |month= ignored (help)
  30. ^ a b Kobold D, Grundmann A, Piscaglia F; et al. (2002). "Expression of reelin in hepatic stellate cells and during hepatic tissue repair: a novel marker for the differentiation of HSC from other liver myofibroblasts". J. Hepatol. 36 (5): 607–13. doi:10.1016/S0168-8278(02)00050-8. PMID 11983443. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  31. ^ a b Pulido JS, Sugaya I, Comstock J, Sugaya K (2007). "Reelin expression is upregulated following ocular tissue injury". Graefes Arch. Clin. Exp. Ophthalmol. 245 (6): 889–93. doi:10.1007/s00417-006-0458-4. PMID 17120005. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  32. ^ Buchaille R, Couble ML, Magloire H, Bleicher F (2000). "A substractive PCR-based cDNA library from human odontoblast cells: identification of novel genes expressed in tooth forming cells". Matrix biology : journal of the International Society for Matrix Biology. 19 (5): 421–30. PMID 10980418. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  33. ^ Allard B, Magloire H, Couble ML, Maurin JC, Bleicher F (2006). "Voltage-gated sodium channels confer excitability to human odontoblasts: possible role in tooth pain transmission". The Journal of biological chemistry. 281 (39): 29002–10. doi:10.1074/jbc.M601020200. PMID 16831873. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  34. ^ Maurin JC, Couble ML, Didier-Bazes M, Brisson C, Magloire H, Bleicher F (2004). "Expression and localization of reelin in human odontoblasts". Matrix biology : journal of the International Society for Matrix Biology. 23 (5): 277–85. doi:10.1016/j.matbio.2004.06.005. PMID 15464360. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  35. ^ Yasui N, Nogi T, Kitao T, Nakano Y, Hattori M, Takagi J (2007). "Structure of a receptor-binding fragment of reelin and mutational analysis reveal a recognition mechanism similar to endocytic receptors". Proc. Natl. Acad. Sci. U.S.A. 104 (24): 9988–93. doi:10.1073/pnas.0700438104. PMC 1891246. PMID 17548821. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  36. ^ a b Quattrocchi CC, Wannenes F, Persico AM, Ciafré SA, D'Arcangelo G, Farace MG, Keller F. (2002). "Reelin is a serine protease of the extracellular matrix". J. Biol. Chem. 277 (1): 303–9. doi:10.1074/jbc.M106996200. PMID 11689558. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  37. ^ a b Royaux I, Lambert de Rouvroit C, D'Arcangelo G, Demirov D, Goffinet AM (1997). "Genomic organization of the mouse reelin gene". Genomics. 46 (2): 240–50. doi:10.1006/geno.1997.4983. PMID 9417911. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  38. ^ Nogi T, Yasui N, Hattori M, Iwasaki K, Takagi J (2006). "Structure of a signaling-competent reelin fragment revealed by X-ray crystallography and electron tomography". EMBO J. 25 (15): 3675–83. doi:10.1038/sj.emboj.7601240. PMC 1538547. PMID 16858396. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  39. ^ Nakano Y, Kohno T, Hibi T; et al. (2007). "The extremely conserved C-terminal region of Reelin is not necessary for secretion but is required for efficient activation of downstream signaling". J. Biol. Chem. 282 (28): 20544–52. doi:10.1074/jbc.M702300200. PMID 17504759. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  40. ^ Lambert de Rouvroit C, de Bergeyck V, Cortvrindt C, Bar I, Eeckhout Y, Goffinet AM (1999). "Reelin, the extracellular matrix protein deficient in reeler mutant mice, is processed by a metalloproteinase". Exp. Neurol. 156 (1): 214–7. doi:10.1006/exnr.1998.7007. PMID 10192793. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  41. ^ a b c Jossin Y, Ignatova N, Hiesberger T, Herz J, Lambert de Rouvroit C, Goffinet AM (2004). "The central fragment of Reelin, generated by proteolytic processing in vivo, is critical to its function during cortical plate development". J. Neurosci. 24 (2): 514–21. doi:10.1523/JNEUROSCI.3408-03.2004. PMID 14724251. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  42. ^ a b c Jossin Y, Gui L, Goffinet AM (2007). "Processing of Reelin by embryonic neurons is important for function in tissue but not in dissociated cultured neurons". J. Neurosci. 27 (16): 4243–52. doi:10.1523/JNEUROSCI.0023-07.2007. PMID 17442808. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  43. ^ a b Blake SM, Strasser V, Andrade N; et al. (2008). "Thrombospondin-1 binds to ApoER2 and VLDL receptor and functions in postnatal neuronal migration". EMBO J. 27: 3069. doi:10.1038/emboj.2008.223. PMID 18946489. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  44. ^ Lennington JB, Yang Z, Conover JC (2003). "Neural stem cells and the regulation of adult neurogenesis". Reprod. Biol. Endocrinol. 1: 99. doi:10.1186/1477-7827-1-99. PMC 293430. PMID 14614786. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  45. ^ a b c d e Nomura T, Takahashi M, Hara Y, Osumi N (2008). "Patterns of neurogenesis and amplitude of Reelin expression are essential for making a mammalian-type cortex". PLoS ONE. 3 (1): e1454. doi:10.1371/journal.pone.0001454. PMC 2175532. PMID 18197264.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  46. ^ a b Hartfuss E, Förster E, Bock HH; et al. (2003). "Reelin signaling directly affects radial glia morphology and biochemical maturation". Development. 130 (19): 4597–609. doi:10.1242/dev.00654. PMID 12925587. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  47. ^ A role for Cajal-Retzius cells and reelin in the development of hippocampal connections. Del Río JA, Heimrich B, Borrell V, Förster E, Drakew A, Alcántara S, Nakajima K, Miyata T, Ogawa M, Mikoshiba K, Derer P, Frotscher M, Soriano E. Nature. 1997 Jan 2;385(6611):70-4. PMID 8985248
  48. ^ Reelin regulates the development and synaptogenesis of the layer-specific entorhino-hippocampal connections. Borrell V, Del Río JA, Alcántara S, Derer M, Martínez A, D'Arcangelo G, Nakajima K, Mikoshiba K, Derer P, Curran T, Soriano E. J Neurosci. 1999 Feb 15;19(4):1345-58. PMID 9952412
  49. ^ a b Hack I, Bancila M, Loulier K, Carroll P, Cremer H (2002). "Reelin is a detachment signal in tangential chain-migration during postnatal neurogenesis". Nat. Neurosci. 5 (10): 939–45. doi:10.1038/nn923. PMID 12244323. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  50. ^ a b c Yoshida M, Assimacopoulos S, Jones KR, Grove EA (2006). "Massive loss of Cajal-Retzius cells does not disrupt neocortical layer order". Development. 133 (3): 537–45. doi:10.1242/dev.02209. PMID 16410414. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  51. ^ Yip YP, Mehta N, Magdaleno S, Curran T, Yip JW (2009). "Ectopic expression of reelin alters migration of sympathetic preganglionic neurons in the spinal cord". J. Comp. Neurol. 515 (2): 260–268. doi:10.1002/cne.22044. PMID 19412957. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  52. ^ a b Campo CG, Sinagra M, Verrier D, Manzoni OJ, Chavis P (2009). "Reelin secreted by GABAergic neurons regulates glutamate receptor homeostasis". PLoS ONE. 4 (5): e5505. doi:10.1371/journal.pone.0005505. PMID 19430527.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  53. ^ Andrade N, Komnenovic V, Blake SM; et al. (2007). "ApoER2/VLDL receptor and Dab1 in the rostral migratory stream function in postnatal neuronal migration independently of Reelin". Proceedings of the National Academy of Sciences of the United States of America. 104 (20): 8508–13. doi:10.1073/pnas.0611391104. PMC 1895980. PMID 17494763. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  54. ^ Frotscher M, Haas CA, Förster E (2003). "Reelin controls granule cell migration in the dentate gyrus by acting on the radial glial scaffold". Cereb. Cortex. 13 (6): 634–40. doi:10.1093/cercor/13.6.634. PMID 12764039. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  55. ^ INSERM - Olivier Manzoni - Physiopathology of Synaptic Transmission and Plasticity - Bordo neuroscience institute.
  56. ^ Sinagra M, Verrier D, Frankova D, Korwek KM, Blahos J, Weeber EJ, Manzoni OJ, Chavis P (2005). "Reelin, very-low-density lipoprotein receptor, and apolipoprotein E receptor 2 control somatic NMDA receptor composition during hippocampal maturation in vitro". J. Neurosci. 25 (26): 6127–36. doi:10.1523/JNEUROSCI.1757-05.2005. PMID 15987942. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  57. ^ a b Groc L, Choquet D, Stephenson FA, Verrier D, Manzoni OJ, Chavis P (2007). "NMDA receptor surface trafficking and synaptic subunit composition are developmentally regulated by the extracellular matrix protein Reelin". J. Neurosci. 27 (38): 10165–75. doi:10.1523/JNEUROSCI.1772-07.2007. PMID 17881522.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  58. ^ Liu XB, Murray KD, Jones EG (2004). "Switching of NMDA receptor 2A and 2B subunits at thalamic and cortical synapses during early postnatal development". J. Neurosci. 24 (40): 8885–95. doi:10.1523/JNEUROSCI.2476-04.2004. PMID 15470155. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  59. ^ Bar I, Lambert de Rouvroit C, Goffinet AM (2000). "The evolution of cortical development. An hypothesis based on the role of the Reelin signaling pathway". Trends Neurosci. 23 (12): 633–8. doi:10.1016/S0166-2236(00)01675-1. PMID 11137154. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  60. ^ Molnár Z, Métin C, Stoykova A; et al. (2006). "Comparative aspects of cerebral cortical development". Eur. J. Neurosci. 23 (4): 921–34. doi:10.1111/j.1460-9568.2006.04611.x. PMC 1931431. PMID 16519657. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  61. ^ a b Pérez-García CG, González-Delgado FJ, Suárez-Solá ML; et al. (2001). "Reelin-immunoreactive neurons in the adult vertebrate pallium". J. Chem. Neuroanat. 21 (1): 41–51. doi:10.1016/S0891-0618(00)00104-6. PMID 11173219. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  62. ^ Costagli A, Kapsimali M, Wilson SW, Mione M (2002). "Conserved and divergent patterns of Reelin expression in the zebrafish central nervous system". J. Comp. Neurol. 450 (1): 73–93. doi:10.1002/cne.10292. PMID 12124768. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  63. ^ Goffinet AM (2006). "What makes us human? A biased view from the perspective of comparative embryology and mouse genetics". J Biomed Discov Collab. 1: 16. doi:10.1186/1747-5333-1-13. PMC 1769396. PMID 17132178.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  64. ^ Pollard KS, Salama SR, Lambert N; et al. (2006). "An RNA gene expressed during cortical development evolved rapidly in humans". Nature. 443 (7108): 167–72. doi:10.1038/nature05113. PMID 16915236. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  65. ^ Williamson SH, Hubisz MJ, Clark AG, Payseur BA, Bustamante CD, Nielsen R (2007). "Localizing Recent Adaptive Evolution in the Human Genome". PLoS Genetics. 3 (6): e90. doi:10.1371/journal.pgen.0030090. PMID 17542651.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  66. ^ Wade N (2007-06-26). "Humans Have Spread Globally, and Evolved Locally". Science. New York Times. Retrieved 2008-08-23. {{cite web}}: Cite has empty unknown parameter: |coauthors= (help)
  67. ^ a b Zhang G, Assadi AH, McNeil RS, Beffert U, Wynshaw-Boris A, Herz J, Clark GD, D’Arcangelo G. (2007). "The Pafah1b complex interacts with the Reelin receptor VLDLR". PLoS ONE. 2 (2): e252. doi:10.1371/journal.pone.0000252. PMC 1800349. PMID 17330141.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  68. ^ Schmid RS, Jo R, Shelton S, Kreidberg JA, Anton ES (2005). "Reelin, integrin and DAB1 interactions during embryonic cerebral cortical development". Cereb. Cortex. 15 (10): 1632–6. doi:10.1093/cercor/bhi041. PMID 15703255. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  69. ^ Senzaki K, Ogawa M, Yagi T (1999). "Proteins of the CNR family are multiple receptors for Reelin". Cell. 99 (6): 635–47. doi:10.1016/S0092-8674(00)81552-4. PMID 10612399. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  70. ^ Belvindrah R, Graus-Porta D, Goebbels S, Nave KA, Müller U (2007). "Beta1 integrins in radial glia but not in migrating neurons are essential for the formation of cell layers in the cerebral cortex". J. Neurosci. 27 (50): 13854–65. doi:10.1523/JNEUROSCI.4494-07.2007. PMID 18077697. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  71. ^ Howell BW, Gertler FB, Cooper JA (1997). "Mouse disabled (mDab1): a Src binding protein implicated in neuronal development". EMBO J. 16 (1): 121–32. doi:10.1093/emboj/16.1.121. PMC 1169619. PMID 9009273. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  72. ^ Arnaud L, Ballif BA, Förster E, Cooper JA (2003). "Fyn tyrosine kinase is a critical regulator of disabled-1 during brain development". Curr. Biol. 13 (1): 9–17. doi:10.1016/S0960-9822(02)01397-0. PMID 12526739. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  73. ^ Feng L, Allen NS, Simo S, Cooper JA (2007). "Cullin 5 regulates Dab1 protein levels and neuron positioning during cortical development". Genes Dev. 21 (21): 2717–30. doi:10.1101/gad.1604207. PMC 2045127. PMID 17974915. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  74. ^ Kerjan G, Gleeson JG (2007). "A missed exit: Reelin sets in motion Dab1 polyubiquitination to put the break on neuronal migration". Genes Dev. 21 (22): 2850–4. doi:10.1101/gad.1622907. PMID 18006681. {{cite journal}}: Unknown parameter |month= ignored (help)
  75. ^ a b Keilani S, Sugaya K (2008). "Reelin induces a radial glial phenotype in human neural progenitor cells by activation of Notch-1". BMC Dev. Biol. 8 (1): 69. doi:10.1186/1471-213X-8-69. PMID 18593473. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: unflagged free DOI (link)
  76. ^ Hack I, Hellwig S, Junghans D, Brunne B, Bock HH, Zhao S, Frotscher M (2007). "Divergent roles of ApoER2 and Vldlr in the migration of cortical neurons". Development. 134 (21): 3883–91. doi:10.1242/dev.005447. PMID 17913789.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  77. ^ Utsunomiya-Tate N, Kubo K, Tate S; et al. (2000). "Reelin molecules assemble together to form a large protein complex, which is inhibited by the function-blocking CR-50 antibody". Proc. Natl. Acad. Sci. U.S.A. 97 (17): 9729–34. doi:10.1073/pnas.160272497. PMC 16933. PMID 10920200. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  78. ^ Kubo K, Mikoshiba K, Nakajima K (2002). "Secreted Reelin molecules form homodimers". Neurosci. Res. 43 (4): 381–8. doi:10.1016/S0168-0102(02)00068-8. PMID 12135781. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  79. ^ a b Strasser V, Fasching D, Hauser C; et al. (2004). "Receptor clustering is involved in Reelin signaling". Molecular and cellular biology. 24 (3): 1378–86. doi:10.1128/MCB.24.3.1378-1386.2004. PMC 321426. PMID 14729980. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  80. ^ Beffert U, Weeber EJ, Durudas A; et al. (2005). "Modulation of synaptic plasticity and memory by Reelin involves differential splicing of the lipoprotein receptor Apoer2" (PDF). Neuron. 47 (4): 567–79. doi:10.1016/j.neuron.2005.07.007. PMID 16102539. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  81. ^ Miller CA, Sweatt JD (2007). "Covalent modification of DNA regulates memory formation". Neuron. 53 (6): 857–69. doi:10.1016/j.neuron.2007.02.022. PMID 17359920. {{cite journal}}: Unknown parameter |month= ignored (help)
  82. ^ a b Matsuki T, Pramatarova A, Howell BW (2008). "Reduction of Crk and CrkL expression blocks reelin-induced dendritogenesis". J. Cell. Sci. 121: 1869. doi:10.1242/jcs.027334. PMID 18477607. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  83. ^ Ballif BA, Arnaud L, Arthur WT, Guris D, Imamoto A, Cooper JA (2004). "Activation of a Dab1/CrkL/C3G/Rap1 pathway in Reelin-stimulated neurons". Curr. Biol. 14 (7): 606–10. doi:10.1016/j.cub.2004.03.038. PMID 15062102. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  84. ^ Park TJ, Curran T (2008). "Crk and crk-like play essential overlapping roles downstream of disabled-1 in the reelin pathway". J. Neurosci. 28 (50): 13551–62. doi:10.1523/JNEUROSCI.4323-08.2008. PMID 19074029. {{cite journal}}: Unknown parameter |month= ignored (help)
  85. ^ Lugli G, Krueger JM, Davis JM, Persico AM, Keller F, Smalheiser NR (2003). "Methodological factors influencing measurement and processing of plasma reelin in humans". BMC Biochem. 4: 9. doi:10.1186/1471-2091-4-9. PMC 200967. PMID 12959647. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  86. ^ Hibi T, Hattori M (2009). "The N-terminal fragment of Reelin is generated after endocytosis and released through the pathway regulated by Rab11". FEBS Lett. doi:10.1016/j.febslet.2009.03.024. PMID 19303411. {{cite journal}}: Unknown parameter |month= ignored (help)
  87. ^ Chameau P, Inta D, Vitalis T, Monyer H, Wadman WJ, van Hooft JA (2009). "The N-terminal region of reelin regulates postnatal dendritic maturation of cortical pyramidal neurons". Proc. Natl. Acad. Sci. U.S.A. doi:10.1073/pnas.0810764106. PMID 19366679. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  88. ^ Chai X, Förster E, Zhao S, Bock HH, Frotscher M (2009). "Reelin stabilizes the actin cytoskeleton of neuronal processes by inducing n-cofilin phosphorylation at serine3". J. Neurosci. 29 (1): 288–99. doi:10.1523/JNEUROSCI.2934-08.2009. PMID 19129405. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  89. ^ Frotscher M, Chai X, Bock HH, Haas CA, Förster E, Zhao S (2009). "Role of Reelin in the development and maintenance of cortical lamination". J Neural Transm. doi:10.1007/s00702-009-0228-7. PMID 19396394. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  90. ^ Arnaud L, Ballif BA, Cooper JA (2003). "Regulation of protein tyrosine kinase signaling by substrate degradation during brain development". Mol. Cell. Biol. 23 (24): 9293–302. doi:10.1128/MCB.23.24.9293-9302.2003. PMC 309695. PMID 14645539. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  91. ^ Ohshima T, Suzuki H, Morimura T, Ogawa M, Mikoshiba K (2007). "Modulation of Reelin signaling by Cyclin-dependent kinase 5". Brain Res. 1140: 84–95. doi:10.1016/j.brainres.2006.01.121. PMID 16529723. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  92. ^ Keshvara L, Magdaleno S, Benhayon D, Curran T (2002). "Cyclin-dependent kinase 5 phosphorylates disabled 1 independently of Reelin signaling". J. Neurosci. 22 (12): 4869–77. PMID 12077184. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  93. ^ Kobayashi S, Ishiguro K, Omori A, Takamatsu M, Arioka M, Imahori K, Uchida T (1993). "A cdc2-related kinase PSSALRE/cdk5 is homologous with the 30 kDa subunit of tau protein kinase II, a proline-directed protein kinase associated with microtubule". FEBS Lett. 335 (2): 171–5. doi:10.1016/0014-5793(93)80723-8. PMID 8253190. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  94. ^ Beffert U, Morfini G, Bock HH, Reyna H, Brady ST, Herz J (2002). "Reelin-mediated signaling locally regulates protein kinase B/Akt and glycogen synthase kinase 3beta". J. Biol. Chem. 277 (51): 49958–64. doi:10.1074/jbc.M209205200. PMID 12376533. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  95. ^ Sasaki S, Shionoya A, Ishida M, Gambello MJ, Yingling J, Wynshaw-Boris A, Hirotsune S (2000). "A LIS1/NUDEL/cytoplasmic dynein heavy chain complex in the developing and adult nervous system". Neuron. 28 (3): 681–96. doi:10.1016/S0896-6273(00)00146-X. PMID 11163259. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  96. ^ a b Beffert U, Weeber EJ, Morfini G, Ko J, Brady ST, Tsai LH, Sweatt JD, Herz J (2004). "Reelin and cyclin-dependent kinase 5-dependent signals cooperate in regulating neuronal migration and synaptic transmission". J. Neurosci. 24 (8): 1897–906. doi:10.1523/JNEUROSCI.4084-03.2004. PMID 14985430. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  97. ^ Ohshima T, Ogawa M, Veeranna, Hirasawa M, Longenecker G, Ishiguro K, Pant HC, Brady RO, Kulkarni AB, Mikoshiba K (2001). "Synergistic contributions of cyclin-dependant kinase 5/p35 and Reelin/Dab1 to the positioning of cortical neurons in the developing mouse brain". Proc. Natl. Acad. Sci. U.S.A. 98 (5): 2764–9. doi:10.1073/pnas.051628498. PMC 30213. PMID 11226314. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  98. ^ Hong SE, Shugart YY, Huang DT; et al. (2000). "Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations". Nat. Genet. 26 (1): 93–6. doi:10.1038/79246. PMID 10973257. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  99. ^ Crino P (2001). "New RELN Mutation Associated with Lissencephaly and Epilepsy". Epilepsy Curr. 1 (2): 72. doi:10.1046/j.1535-7597.2001.00017.x. PMC 320825. PMID 15309195. {{cite journal}}: Unknown parameter |month= ignored (help)
  100. ^ Zaki M, Shehab M, El-Aleem AA; et al. (2007). "Identification of a novel recessive RELN mutation using a homozygous balanced reciprocal translocation". Am. J. Med. Genet. A. 143A (9): 939–44. doi:10.1002/ajmg.a.31667. PMID 17431900. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  101. ^ Impagnatiello F, Guidotti AR, Pesold C; et al. (1998). "A decrease of reelin expression as a putative vulnerability factor in schizophrenia". Proc. Natl. Acad. Sci. U.S.A. 95 (26): 15718–23. doi:10.1073/pnas.95.26.15718. PMC 28110. PMID 9861036. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  102. ^ a b Guidotti A, Auta J, Davis JM; et al. (2000). "Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study". Arch. Gen. Psychiatry. 57 (11): 1061–9. doi:10.1001/archpsyc.57.11.1061. PMID 11074872. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  103. ^ Fatemi SH, Earle JA, McMenomy T (2000). "Reduction in Reelin immunoreactivity in hippocampus of subjects with schizophrenia, bipolar disorder and major depression". Mol. Psychiatry. 5 (6): 654–63, 571. doi:10.1038/sj.mp.4000783. PMID 11126396. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  104. ^ a b Fatemi SH, Hossein Fatemi S, Stary JM, Earle JA, Araghi-Niknam M, Eagan E (2005). "GABAergic dysfunction in schizophrenia and mood disorders as reflected by decreased levels of glutamic acid decarboxylase 65 and 67 kDa and Reelin proteins in cerebellum". Schizophr. Res. 72 (2–3): 109–22. doi:10.1016/j.schres.2004.02.017. PMID 15560956. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  105. ^ a b Veldic M, Kadriu B, Maloku E, Agis-Balboa RC, Guidotti A, Davis JM, Costa E (2007). "Epigenetic mechanisms expressed in basal ganglia GABAergic neurons differentiate schizophrenia from bipolar disorder". Schizophr. Res. 91 (1–3): 51–61. doi:10.1016/j.schres.2006.11.029. PMC 1876737. PMID 17270400. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  106. ^ Eastwood SL, Harrison PJ (2003). "Interstitial white matter neurons express less reelin and are abnormally distributed in schizophrenia: towards an integration of molecular and morphologic aspects of the neurodevelopmental hypothesis". Mol. Psychiatry. 8 (9): 769, 821–31. doi:10.1038/sj.mp.4001371. PMID 12931209. {{cite journal}}: Unknown parameter |month= ignored (help)
  107. ^ Abdolmaleky HM, Cheng KH, Russo A; et al. (2005). "Hypermethylation of the reelin (RELN) promoter in the brain of schizophrenic patients: a preliminary report". Am. J. Med. Genet. B Neuropsychiatr. Genet. 134B (1): 60–6. doi:10.1002/ajmg.b.30140. PMID 15717292. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  108. ^ Fatemi SH, Kroll JL, Stary JM (2001). "Altered levels of Reelin and its isoforms in schizophrenia and mood disorders". Neuroreport. 12 (15): 3209–15. doi:10.1097/00001756-200110290-00014. PMID 11711858. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  109. ^ Knable MB, Torrey EF, Webster MJ, Bartko JJ (2001). "Multivariate analysis of prefrontal cortical data from the Stanley Foundation Neuropathology Consortium". Brain Res. Bull. 55 (5): 651–9. doi:10.1016/S0361-9230(01)00521-4. PMID 11576762. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  110. ^ Grayson DR, Jia X, Chen Y; et al. (2005). "Reelin promoter hypermethylation in schizophrenia". Proc. Natl. Acad. Sci. U.S.A. 102 (26): 9341–6. doi:10.1073/pnas.0503736102. PMC 1166626. PMID 15961543. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  111. ^ Dong E, Agis-Balboa RC, Simonini MV, Grayson DR, Costa E, Guidotti A (2005). "Reelin and glutamic acid decarboxylase67 promoter remodeling in an epigenetic methionine-induced mouse model of schizophrenia". Proc. Natl. Acad. Sci. U.S.A. 102 (35): 12578–83. doi:10.1073/pnas.0505394102. PMC 1194936. PMID 16113080. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  112. ^ Pollin W, Cardon PV, Kety SS (1961). "Effects of amino acid feedings in schizophrenic patients treated with iproniazid". Science (journal). 133: 104–5. doi:10.1126/science.133.3446.104. PMID 13736870. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  113. ^ Brune GG, Himwich HE (1962). "Effects of methionine loading on the behavior of schizophrenic patients". J. Nerv. Ment. Dis. 134: 447–50. doi:10.1097/00005053-196205000-00007. PMID 13873983. {{cite journal}}: Unknown parameter |month= ignored (help)
  114. ^ Park L, Baldessarini RJ, Kety SS (1965). "Effects of methionine ingestion in chronic schizophrenia patients treated with monoamine oxidase inhibitors". Arch. Gen. Psychiatry. 12: 346–51. PMID 14258360. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  115. ^ Antun FT, Burnett GB, Cooper AJ, Daly RJ, Smythies JR, Zealley AK (1971). "The effects of L-methionine (without MAOI) in schizophrenia". J Psychiatr Res. 8 (2): 63–71. doi:10.1016/0022-3956(71)90009-4. PMID 4932991. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  116. ^ Grayson DR, Chen Y, Dong E, Kundakovic M, Guidotti A (2009). "From trans-methylation to cytosine methylation: Evolution of the methylation hypothesis of schizophrenia". Epigenetics. 4 (3). PMID 19395859. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  117. ^ Ruzicka WB, Zhubi A, Veldic M, Grayson DR, Costa E, Guidotti A (2007). "Selective epigenetic alteration of layer I GABAergic neurons isolated from prefrontal cortex of schizophrenia patients using laser-assisted microdissection". Mol. Psychiatry. 12 (4): 385–97. doi:10.1038/sj.mp.4001954. PMID 17264840. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  118. ^ Veldic M, Caruncho HJ, Liu WS, Davis J, Satta R, Grayson DR, Guidotti A, Costa E (2004). "DNA-methyltransferase 1 mRNA is selectively overexpressed in telencephalic GABAergic interneurons of schizophrenia brains". Proc. Natl. Acad. Sci. U.S.A. 101 (1): 348–53. doi:10.1073/pnas.2637013100. PMC 314188. PMID 14684836. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  119. ^ Veldic M, Guidotti A, Maloku E, Davis JM, Costa E (2005). "In psychosis, cortical interneurons overexpress DNA-methyltransferase 1". Proc. Natl. Acad. Sci. U.S.A. 102 (6): 2152–7. doi:10.1073/pnas.0409665102. PMC 548582. PMID 15684088. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  120. ^ Tremolizzo L, Doueiri MS, Dong E; et al. (2005). "Valproate corrects the schizophrenia-like epigenetic behavioral modifications induced by methionine in mice". Biol. Psychiatry. 57 (5): 500–9. doi:10.1016/j.biopsych.2004.11.046. PMID 15737665. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  121. ^ Chen Y, Sharma RP, Costa RH, Costa E, Grayson DR (2002). "On the epigenetic regulation of the human reelin promoter". Nucleic Acids Res. 30 (13): 2930–9. doi:10.1093/nar/gkf401. PMC 117056. PMID 12087179. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  122. ^ Mitchell CP, Chen Y, Kundakovic M, Costa E, Grayson DR (2005). "Histone deacetylase inhibitors decrease reelin promoter methylation in vitro". J. Neurochem. 93 (2): 483–92. doi:10.1111/j.1471-4159.2005.03040.x. PMID 15816871. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  123. ^ Tremolizzo L, Carboni G, Ruzicka WB; et al. (2002). "An epigenetic mouse model for molecular and behavioral neuropathologies related to schizophrenia vulnerability". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 17095–100. doi:10.1073/pnas.262658999. PMC 139275. PMID 12481028. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  124. ^ Benes FM, Lim B, Matzilevich D, Walsh JP, Subburaju S, Minns M (2007). "Regulation of the GABA cell phenotype in hippocampus of schizophrenics and bipolars". Proc. Natl. Acad. Sci. U.S.A. 104 (24): 10164–9. doi:10.1073/pnas.0703806104. PMC 1888575. PMID 17553960. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  125. ^ Dong E, Guidotti A, Grayson DR, Costa E (2007). "Histone hyperacetylation induces demethylation of reelin and 67-kDa glutamic acid decarboxylase promoters". Proc. Natl. Acad. Sci. U.S.A. 104 (11): 4676–81. doi:10.1073/pnas.0700529104. PMC 1815468. PMID 17360583. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  126. ^ Kundakovic M, Chen Y, Costa E, Grayson DR (2007). "DNA methyltransferase inhibitors coordinately induce expression of the human reelin and glutamic acid decarboxylase 67 genes". Mol. Pharmacol. 71 (3): 644–53. doi:10.1124/mol.106.030635. PMID 17065238. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  127. ^ Kundakovic M, Chen Y, Guidotti A, Grayson DR (2008). "The reelin and GAD67 promoters are activated by epigenetic drugs that facilitate the disruption of local repressor complexes". Mol. Pharmacol. 75: 342. doi:10.1124/mol.108.051763. PMID 19029285. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  128. ^ Guidotti A, Ruzicka W, Grayson DR; et al. (2007). "S-adenosyl methionine and DNA methyltransferase-1 mRNA overexpression in psychosis". Neuroreport. 18 (1): 57–60. doi:10.1097/WNR.0b013e32800fefd7. PMID 17259861. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  129. ^ Fatemi SH, Emamian ES, Kist D, Sidwell RW, Nakajima K, Akhter P, Shier A, Sheikh S, Bailey K (1999). "Defective corticogenesis and reduction in Reelin immunoreactivity in cortex and hippocampus of prenatally infected neonatal mice". Mol. Psychiatry. 4 (2): 145–54. doi:10.1038/sj.mp.4000520. PMID 10208446. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  130. ^ Meyer U, Nyffeler M, Yee BK, Knuesel I, Feldon J (2007). "Adult brain and behavioral pathological markers of prenatal immune challenge during early/middle and late fetal development in mice". Brain Behav Immun. 22: 469. doi:10.1016/j.bbi.2007.09.012. PMID 18023140.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  131. ^ a b Wedenoja J, Loukola A, Tuulio-Henriksson A, Paunio T, Ekelund J, Silander K, Varilo T, Heikkilä K, Suvisaari J, Partonen T, Lönnqvist J, Peltonen L (2007). "Replication of linkage on chromosome 7q22 and association of the regional Reelin gene with working memory in schizophrenia families". Mol Psychiatry. 13: 673. doi:10.1038/sj.mp.4002047. PMID 17684500.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  132. ^ Shifman S, Johannesson M, Bronstein M, Chen SX, Collier DA, Craddock NJ, Kendler KS, Li T, O'Donovan M, O'Neill FA, Owen MJ, Walsh D, Weinberger DR, Sun C, Flint J, Darvasi A (2008). "Genome-Wide Association Identifies a Common Variant in the Reelin Gene That Increases the Risk of Schizophrenia Only in Women". PLoS Genet. 4 (2): e28. doi:10.1371/journal.pgen.0040028. PMID 18282107.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link) free full text
  133. ^ Wedenoja J, Tuulio-Henriksson A, Suvisaari J, Loukola A, Paunio T, Partonen T, Varilo T, Lönnqvist J, Peltonen L (2009). "Replication of Association Between Working Memory and Reelin, a Potential Modifier Gene in Schizophrenia". Biol. Psychiatry. doi:10.1016/j.biopsych.2009.09.026. PMID 19922905. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  134. ^ Gregório SP, Sallet PC, Do KA, Lin E, Gattaz WF, Dias-Neto E (2008). "Polymorphisms in genes involved in neurodevelopment may be associated with altered brain morphology in schizophrenia: Preliminary evidence". Psychiatry Res. 165: 1. doi:10.1016/j.psychres.2007.08.011. PMID 19054571. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  135. ^ a b Suzuki K, Nakamura K, Iwata Y, Sekine Y, Kawai M, Sugihara G, Tsuchiya KJ, Suda S, Matsuzaki H, Takei N, Hashimoto K, Mori N (2007). "Decreased expression of reelin receptor VLDLR in peripheral lymphocytes of drug-naive schizophrenic patients". Schizophrenia Research. 98: 148. doi:10.1016/j.schres.2007.09.029. PMID 17936586.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  136. ^ Sweet RA, Henteleff RA, Zhang W, Sampson AR, Lewis DA (2008). "Reduced Dendritic Spine Density in Auditory Cortex of Subjects with Schizophrenia". Neuropsychopharmacology. 34: 374. doi:10.1038/npp.2008.67. PMID 18463626. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  137. ^ Glantz LA, Lewis DA (2000). "Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia". Arch. Gen. Psychiatry. 57 (1): 65–73. doi:10.1001/archpsyc.57.1.65. PMID 10632234. {{cite journal}}: Unknown parameter |month= ignored (help)
  138. ^ Rodriguez MA, Pesold C, Liu WS; et al. (2000). "Colocalization of integrin receptors and reelin in dendritic spine postsynaptic densities of adult nonhuman primate cortex". Proc. Natl. Acad. Sci. U.S.A. 97 (7): 3550–5. doi:10.1073/pnas.050589797. PMC 16277. PMID 10725376. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  139. ^ Costa E, Davis J, Grayson DR, Guidotti A, Pappas GD, Pesold C (2001). "Dendritic spine hypoplasticity and downregulation of reelin and GABAergic tone in schizophrenia vulnerability". Neurobiol. Dis. 8 (5): 723–42. doi:10.1006/nbdi.2001.0436. PMID 11592844. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  140. ^ Kamnasaran D, Muir WJ, Ferguson-Smith MA, Cox DW (2003). "Disruption of the neuronal PAS3 gene in a family affected with schizophrenia". J. Med. Genet. 40 (5): 325–32. doi:10.1136/jmg.40.5.325. PMC 1735455. PMID 12746393. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  141. ^ Erbel-Sieler C, Dudley C, Zhou Y; et al. (2004). "Behavioral and regulatory abnormalities in mice deficient in the NPAS1 and NPAS3 transcription factors". Proc. Natl. Acad. Sci. U.S.A. 101 (37): 13648–53. doi:10.1073/pnas.0405310101. PMC 518807. PMID 15347806. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  142. ^ Chen Z, Schwahn BC, Wu Q, He X, Rozen R (2005). "Postnatal cerebellar defects in mice deficient in methylenetetrahydrofolate reductase". Int. J. Dev. Neurosci. 23 (5): 465–74. doi:10.1016/j.ijdevneu.2005.05.007. PMID 15979267. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  143. ^ Gene Overview of All Published Schizophrenia-Association Studies for GRIN2B - Schizophrenia Gene Database.
  144. ^ a b Wang GS, Hong CJ, Yen TY, Huang HY, Ou Y, Huang TN, Jung WG, Kuo TY, Sheng M, Wang TF, Hsueh YP (2004). "Transcriptional modification by a CASK-interacting nucleosome assembly protein". Neuron. 42 (1): 113–28. PMID 15066269. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  145. ^ Pappas GD, Kriho V, Pesold C (2001). "Reelin in the extracellular matrix and dendritic spines of the cortex and hippocampus: a comparison between wild type and heterozygous reeler mice by immunoelectron microscopy". J. Neurocytol. 30 (5): 413–25. doi:10.1023/A:1015017710332. PMID 11951052. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  146. ^ Podhorna J, Didriksen M (2004). "The heterozygous reeler mouse: behavioural phenotype". Behav. Brain Res. 153 (1): 43–54. doi:10.1016/j.bbr.2003.10.033. PMID 15219705. {{cite journal}}: Unknown parameter |month= ignored (help)
  147. ^ Sex-specific association of the reelin gene with bipolar disorder. Goes FS, Willour VL, Zandi PP, Belmonte PL, Mackinnon DF, Mondimore FM, Schweizer B, Depaulo JR Jr, Gershon ES, McMahon FJ, Potash JB; National Institute of Mental Health Genetics Initiative Bipolar Disorder Consortium. Am J Med Genet B Neuropsychiatr Genet. 2009 Aug 18. [Epub ahead of print] PMID 19691043
  148. ^ Persico AM, D'Agruma L, Maiorano N, Totaro A, Militerni R, Bravaccio C, Wassink TH, Schneider C, Melmed R, Trillo S, Montecchi F, Palermo M, Pascucci T, Puglisi-Allegra S, Reichelt KL, Conciatori M, Marino R, Quattrocchi CC, Baldi A, Zelante L, Gasparini P, Keller F (2001). "Reelin gene alleles and haplotypes as a factor predisposing to autistic disorder". Mol. Psychiatry. 6 (2): 150–9. doi:10.1038/sj.mp.4000850. PMID 11317216. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  149. ^ Zhang H, Liu X, Zhang C, Mundo E, Macciardi F, Grayson DR, Guidotti AR, Holden JJ (2002). "Reelin gene alleles and susceptibility to autism spectrum disorders". Mol. Psychiatry. 7 (9): 1012–7. doi:10.1038/sj.mp.4001124. PMID 12399956.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  150. ^ Bonora E, Beyer KS, Lamb JA, Parr JR, Klauck SM, Benner A, Paolucci M, Abbott A, Ragoussis I, Poustka A, Bailey AJ, Monaco AP (2003). "Analysis of reelin as a candidate gene for autism". Mol. Psychiatry. 8 (10): 885–92. doi:10.1038/sj.mp.4001310. PMID 14515139. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  151. ^ Devlin B, Bennett P, Dawson G, Figlewicz DA, Grigorenko EL, McMahon W, Minshew N, Pauls D, Smith M, Spence MA, Rodier PM, Stodgell C, Schellenberg GD (2004). "Alleles of a reelin CGG repeat do not convey liability to autism in a sample from the CPEA network". Am. J. Med. Genet. B Neuropsychiatr. Genet. 126B (1): 46–50. doi:10.1002/ajmg.b.20125. PMID 15048647. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  152. ^ Pardo CA, Eberhart CG (2007). "The neurobiology of autism". Brain Pathol. 17 (4): 434–47. doi:10.1111/j.1750-3639.2007.00102.x. PMID 17919129. {{cite journal}}: Unknown parameter |month= ignored (help)
  153. ^ Haas CA, Dudeck O, Kirsch M; et al. (2002). "Role for reelin in the development of granule cell dispersion in temporal lobe epilepsy". J. Neurosci. 22 (14): 5797–802. doi:20026621. PMID 12122039. {{cite journal}}: Check |doi= value (help); Explicit use of et al. in: |author= (help); Unknown parameter |doi_brokendate= ignored (|doi-broken-date= suggested) (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  154. ^ Heinrich C, Nitta N, Flubacher A; et al. (2006). "Reelin deficiency and displacement of mature neurons, but not neurogenesis, underlie the formation of granule cell dispersion in the epileptic hippocampus". J. Neurosci. 26 (17): 4701–13. doi:10.1523/JNEUROSCI.5516-05.2006. PMID 16641251. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  155. ^ Kobow K, Jeske I, Hildebrandt M, Hauke J, Hahnen E, Buslei R, Buchfelder M, Weigel D, Stefan H, Kasper B, Pauli E, Blümcke I (2009). "Increased Reelin Promoter Methylation Is Associated With Granule Cell Dispersion in Human Temporal Lobe Epilepsy". J. Neuropathol. Exp. Neurol. doi:10.1097/NEN.0b013e31819ba737. PMID 19287316. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  156. ^ Gong C, Wang TW, Huang HS, Parent JM (2007). "Reelin regulates neuronal progenitor migration in intact and epileptic hippocampus". J. Neurosci. 27 (8): 1803–11. doi:10.1523/JNEUROSCI.3111-06.2007. PMID 17314278. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  157. ^ Müller MC, Osswald M, Tinnes S, Häussler U, Jacobi A, Förster E, Frotscher M, Haas CA (2009). "Exogenous reelin prevents granule cell dispersion in experimental epilepsy". Exp. Neurol. 216: 390. doi:10.1016/j.expneurol.2008.12.029. PMID 19185570. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  158. ^ Botella-López A, Burgaya F, Gavín R; et al. (2006). "Reelin expression and glycosylation patterns are altered in Alzheimer's disease". Proc. Natl. Acad. Sci. U.S.A. 103 (14): 5573–8. doi:10.1073/pnas.0601279103. PMC 1414634. PMID 16567613. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  159. ^ Wirths O, Multhaup G, Czech C; et al. (2001). "Reelin in plaques of beta-amyloid precursor protein and presenilin-1 double-transgenic mice". Neurosci. Lett. 316 (3): 145–8. doi:10.1016/S0304-3940(01)02399-0. PMID 11744223. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  160. ^ Seripa D, Matera MG, Franceschi M; et al. (2008). "The RELN locus in Alzheimer's disease". J. Alzheimers Dis. 14 (3): 335–44. PMID 18599960. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  161. ^ Baloyannis SJ (2005). "Morphological and morphometric alterations of Cajal-Retzius cells in early cases of Alzheimer's disease: a Golgi and electron microscope study". Int. J. Neurosci. 115 (7): 965–80. doi:10.1080/00207450590901396. PMID 16051543. {{cite journal}}: Unknown parameter |month= ignored (help)
  162. ^ Baloyannis SJ, Costa V, Mauroudis I, Psaroulis D, Manolides SL, Manolides LS (2007). "Dendritic and spinal pathology in the acoustic cortex in Alzheimer's disease: morphological and morphometric estimation by Golgi technique and electron microscopy". Acta Otolaryngol. 127 (4): 351–4. doi:10.1080/00016480601126986. PMID 17453452. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  163. ^ Hoe HS, Lee KJ, Carney RS, Lee J, Markova A, Lee JY, Howell BW, Hyman BT, Pak DT, Bu G, Rebeck GW (2009). "Interaction of reelin with amyloid precursor protein promotes neurite outgrowth". J. Neurosci. 29 (23): 7459–73. doi:10.1523/JNEUROSCI.4872-08.2009. PMID 19515914. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  164. ^ Journal publication and a news report:
  165. ^ Aoki, Takeya; Mizuki, Yasushi; Terashima, Toshio Relation between schizophrenia and Alzheimer's disease: the reelin signaling pathway Psychogeriatrics, Volume 5, Number 2, June 2005 , pp. 42-47(6)
  166. ^ Sato N, Fukushima N, Chang R, Matsubayashi H, Goggins M. (2006) Differential and epigenetic gene expression profiling identifies frequent disruption of the RELN pathway in pancreatic cancers. Gastroenterology. 130(2):548-65. PMID 16472607
  167. ^ Perrone G, Vincenzi B, Zagami M, Santini D, Panteri R, Flammia G, Verzi A, Lepanto D, Morini S, Russo A, Bazan V, Tomasino RM, Morello V, Tonini G, Rabitti C. (2007) Reelin expression in human prostate cancer: a marker of tumor aggressiveness based on correlation with grade. Modern Pathology. doi:10.1038/modpathol.3800743. PMID 17277764
  168. ^ Seigel GM, Hackam AS, Ganguly A, Mandell LM, Gonzalez-Fernandez F (2007). "Human embryonic and neuronal stem cell markers in retinoblastoma". Mol. Vis. 13: 823–32. PMID 17615543.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  169. ^ Schrauwen I, Ealy M, Huentelman MJ, Thys M, Homer N, Vanderstraeten K, Fransen E, Corneveaux JJ, Craig DW, Claustres M, Cremers CW, Dhooge I, Van de Heyning P, Vincent R, Offeciers E, Smith RJ, Van Camp G (2009). "A Genome-wide Analysis Identifies Genetic Variants in the RELN Gene Associated with Otosclerosis". Am. J. Hum. Genet. 84: 328. doi:10.1016/j.ajhg.2009.01.023. PMID 19230858. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  170. ^ Delahaye NF, Coltel N, Puthier D, Barbier M, Benech P, Joly F, Iraqi FA, Grau GE, Nguyen C, Rihet P (2007). "Gene expression analysis reveals early changes in several molecular pathways in cerebral malaria-susceptible mice versus cerebral malaria-resistant mice". BMC Genomics. 8: 452. doi:10.1186/1471-2164-8-452. PMC 2246131. PMID 18062806.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  171. ^ a b Smit-Rigter LA, Champagne DL, van Hooft JA (2009). "Lifelong impact of variations in maternal care on dendritic structure and function of cortical layer 2/3 pyramidal neurons in rat offspring". PLoS ONE. 4 (4): e5167. doi:10.1371/journal.pone.0005167. PMC 2663818. PMID 19357777.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  172. ^ Weaver IC, Meaney MJ, Szyf M (2006). "Maternal care effects on the hippocampal transcriptome and anxiety-mediated behaviors in the offspring that are reversible in adulthood". Proc. Natl. Acad. Sci. U.S.A. 103 (9): 3480–5. doi:10.1073/pnas.0507526103. PMC 1413873. PMID 16484373. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  173. ^ Lussier AL, Caruncho HJ, Kalynchuk LE (2009). "Repeated exposure to corticosterone, but not restraint, decreases the number of reelin-positive cells in the adult rat hippocampus". Neurosci. Lett. doi:10.1016/j.neulet.2009.05.050. PMID 19477232. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  174. ^ Lintas C, Persico AM (2009). "Neocortical RELN promoter methylation increases significantly after puberty". Neuroreport. doi:10.1097/WNR.0b013e328334b343. PMID 19952965. {{cite journal}}: Unknown parameter |month= ignored (help)
  175. ^ Dong E, Nelson M, Grayson DR, Costa E, Guidotti A (2008). "Clozapine and sulpiride but not haloperidol or olanzapine activate brain DNA demethylation". Proc. Natl. Acad. Sci. U.S.A. 105: 13614. doi:10.1073/pnas.0805493105. PMID 18757738. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  176. ^ Fatemi SH, Reutiman TJ, Folsom TD (2009). "Chronic psychotropic drug treatment causes differential expression of Reelin signaling system in frontal cortex of rats". Schizophr. Res. doi:10.1016/j.schres.2009.03.002. PMID 19359144. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  177. ^ Andersen, Olav M (2003). "Differential binding of ligands to the apolipoprotein E receptor 2". Biochemistry. 42 (31). United States: 9355–64. doi:10.1021/bi034475p. ISSN 0006-2960. PMID 12899622. {{cite journal}}: Check date values in: |year= (help); Cite has empty unknown parameters: |laydate=, |laysource=, and |laysummary= (help); Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help); Unknown parameter |quotes= ignored (help)CS1 maint: year (link)
  178. ^ Benhayon, David (2003). "Binding of purified Reelin to ApoER2 and VLDLR mediates tyrosine phosphorylation of Disabled-1". Brain Res. Mol. Brain Res. 112 (1–2). Netherlands: 33–45. ISSN 0169-328X. PMID 12670700. {{cite journal}}: Check date values in: |year= (help); Cite has empty unknown parameters: |laydate=, |laysource=, and |laysummary= (help); Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help); Unknown parameter |quotes= ignored (help)CS1 maint: year (link)

Cite error: A list-defined reference with the name "pmid18319075" has been invoked, but is not defined in the <references> tag (see the help page).
Cite error: A list-defined reference with the name "urlSchizophrenia Research Forum: Current Hypotheses" has been invoked, but is not defined in the <references> tag (see the help page).
Cite error: A list-defined reference with the name "pmid19395859" has been invoked, but is not defined in the <references> tag (see the help page).

Cite error: A list-defined reference with the name "pmid17870056" has been invoked, but is not defined in the <references> tag (see the help page).

Articles, publications, webpages

Figures and images

Template:PBB Controls