Supercontinent: Difference between revisions
Kent G. Budge (talk | contribs) Undid revision 1087500737 by Joeballs.osd (talk) Please see discussion on talk page Tag: Undo |
Joeballs.osd (talk | contribs) mNo edit summary Tags: Reverted Visual edit |
||
Line 1: | Line 1: | ||
⚫ | {{Short description|Landmass comprising more than one continental core, or craton}}In-[[geology]],-a-'''supercontinent'''-is-the-assembly-of-most-or-all-of-[[Earth]]'s-[[continent|continental-blocks]]-or-[[craton]]s-to-form-a-single-large-landmass.<ref name="rogers">{{cite book |last1=Rogers |first1=John J. W. |last2=Santosh |first2=M. |title=Continents and supercontinents |date=2004 |publisher=Oxford University Press |location=New York |isbn=978-0195165890 |url=https://books.google.com/books?id=CI9Ig7DGvTMC&q=Rogers%2C+John+J.+W.%2C+and+M.+Santosh.+Continents+and+Supercontinents.+Oxford++Oxford+UP%2C+2004.+Print.&pg=PP1 |access-date=5 January 2021}}</ref><ref name="Rogers_&_Santosh_2002">{{Cite journal |last1=Rogers |first1=J.J.W. |last2=Santosh |first2=M. |date=2002 |title=Configuration of Columbia, a Mesoproterozoic Supercontinent |url=http://szczepan.ct8.pl/teksty/seminar/3.pdf |url-status=dead |journal=Gondwana Research |volume=5 |issue=1 |pages=5–22 |doi=10.1016/S1342-937X(05)70883-2 |bibcode=2002GondR...5....5R |archive-url=https://web.archive.org/web/20150203145852/http://szczepan.ct8.pl/teksty/seminar/3.pdf |archive-date=2015-02-03}}</ref><ref name="hoffman">{{Cite journal |last=Hoffman |first=P.F. |year=1999 |title=The break-up of Rodinia, birth of Gondwana, true polar wander and the snowball Earth |journal=Journal of African Earth Sciences |volume=28 |issue=1 |pages=17–33 |doi=10.1016/S0899-5362(99)00018-4|bibcode=1999JAfES..28...17H }}</ref>-However,-some-earth-scientists-use-a-different-definition,-"a-grouping-of-formerly-dispersed-continents",-which-leaves-room-for-interpretation-and-is-easier-to-apply-to-[[Precambrian]]-times<ref name="bradley">{{Cite journal |last=Bradley |first=D.C. |date=2011 |title=Secular Trends in the Geologic Record and the Supercontinent Cycle |url=http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.715.6618&rep=rep1&type=pdf |journal=Earth-Science Reviews |volume=108 |issue=1–2 |pages=16–33 |doi=10.1016/j.earscirev.2011.05.003|bibcode=2011ESRv..108...16B |citeseerx=10.1.1.715.6618 }}</ref>-although-at-least-about-75%-of-the-continental-crust-then-in-existence-has-been-proposed-as-a-limit-to-separate-supercontinents-from-other-groupings.<ref name="Meert_2012">{{Cite journal |last=Meert |first=J.G. |year=2012 |title=What's in a name? The Columbia (Paleopangaea/Nuna) supercontinent |journal=Gondwana Research |volume=21 |issue=4 |pages=987–993 |doi=10.1016/j.gr.2011.12.002|bibcode=2012GondR..21..987M }}</ref> |
||
{{Short description|Landmass comprising more than one continental core, or craton}}[[File:Afro-Eurasia.png|thumb|Although not a supercontinent, the current [[Afro-Eurasia]] landmass contains about 57% of Earth's land area.]] |
|||
⚫ | Supercontinents-have-assembled-and-dispersed-multiple-times-in-the-geologic-past-(see-table).-According-to-modern-definitions,-a-supercontinent-does-not-exist-today;<ref name="rogers"/>-the-closest-in-existence-to-a-supercontinent-is-the-current-[[Afro-Eurasia]]n-landmass,-which-covers-approx.-57%-of-Earth's-total-land-area.-The-supercontinent-[[Pangaea]]-is-the-collective-name-describing-all-of-the-continental-landmasses-when-they-were-most-recently-near-to-one-another.-The-positions-of-continents-have-been-accurately-determined-back-to-the-early-[[Jurassic]],-shortly-before-the-breakup-of-Pangaea-(see-animated-image).<ref name="flutaeu">Fluteau, Frédéric. (2003). "Earth dynamics and climate changes". C. R. Geoscience '''335''' (1): 157–174. doi:10.1016/S1631-0713(03)00004-X</ref>-The-earlier-continent-[[Gondwana]]-is-not-considered-a-supercontinent-under-the-first-definition-since-the-landmasses-of-[[Baltica]],-[[Laurentia]]-and-[[Siberia (continent)|Siberia]]-were-separate-at-the-time.<ref name=Bradley>{{cite journal|last1=Bradley|first1=D. C.|title=Mineral evolution and Earth history|journal=American Mineralogist|date=23 December 2014|volume=100|issue=1|pages=4–5|doi=10.2138/am-2015-5101|bibcode=2015AmMin.100....4B|s2cid=140191182}}</ref> |
||
⚫ | |||
⚫ | |||
⚫ | Supercontinents |
||
⚫ | |||
⚫ | |||
⚫ | |||
{| class="wikitable" |
{| class="wikitable" |
||
! Supercontinent |
! Supercontinent-name !! Age-(Ma) || Period/Era-Range || Comment |
||
|- |
|- |
||
|[[Vaalbara]] |
|[[Vaalbara]] |
||
|3,636–2,803 || Eoarchean-Mesoarchean ||Also |
|3,636–2,803 || Eoarchean-Mesoarchean ||Also-described-as-a-supercraton-or-just-a-continent<ref name="de_Kock__etal_2009">{{Cite journal |last1=de Kock |first1=M.O. |last2=Evans |first2=D.A.D. |last3=Beukes |first3=N.J. |date=2009 |title=Validating the existence of Vaalbara in the Neoarchean |url=https://people.earth.yale.edu/sites/default/files/files/Evans/35_09g-deKock+Vaalbara.pdf |journal=Precambrian Research |volume=174 |issue=1–2 |pages=145–154 |doi=10.1016/j.precamres.2009.07.002|bibcode=2009PreR..174..145D }}</ref> |
||
|- |
|- |
||
| [[Ur (continent)|Ur]] || 2,803–2,408 || Mesoarchean-Siderian ||Described |
| [[Ur (continent)|Ur]] || 2,803–2,408 || Mesoarchean-Siderian ||Described-as-both-a-continent<ref name="Rogers_&_Santosh_2002"/>-and-a-supercontinent<ref name="Mahapatro_etal_2011">{{Cite journal |last1=Mahapatro |first1=S.N. |last2=Pant |first2=N.C. |last3=Bhowmik |first3=S.K. |last4=Tripathy |first4=A.K. |last5=Nanda |first5=J.K. |date=2011 |title=Archaean granulite facies metamorphism at the Singhbhum Craton–Eastern Ghats Mobile Belt interface: implication for the Ur supercontinent assembly |url=https://d1wqtxts1xzle7.cloudfront.net/46989705/Archaean_granulite_facies_metamorphism_a20160703-24356-1ir4lyy.pdf?1467603398=&response-content-disposition=inline%3B+filename%3DArchaean_granulite_facies_metamorphism_a.pdf&Expires=1601748232&Signature=A0hSe---5HLFUpVrYyJeyyTtQ61hCCAxkWX3Z-9umZBsZlr2rgn272Hyf1ayY~n6uOtlQwdNxKWurZm2lMLRMQTPMy~2iMvu7ihaGlHW3S4PO9dp2C6KHrSp7ccIvacGRX6t45nvF4wIjMy9oH0OSsym3OoeDTkWU9WYnhwCemcCuaYtVMFQN0N66RoP0Ez~q58uV7qHlp23bYu~B7~4HpigdpTzZqcxc1dCPYWDvnjEeALzk0Ww0gaNJphaA3nDVc4TFtckjSMe~qk2-3VshTtnEYXRy3qstNu3csav23x5rYJa2ewMKKob6OdYCWjcsqeHa5DtXohlS-gA4WvXWA__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA |journal=Geological Journal |volume=47 |issue=2–3 |pages=312–333 |doi=10.1002/gj.1311}}{{dead link|date=May 2021|bot=medic}}{{cbignore|bot=medic}}</ref> |
||
|- |
|- |
||
| [[Kenorland]] || 2,720–2,114 || Neoarchean-Rhyacian ||Alternatively |
| [[Kenorland]] || 2,720–2,114 || Neoarchean-Rhyacian ||Alternatively-the-continents-may-have-formed-into-two-groupings-[[Superior Craton|Superia]]-and-[[Sclavia Craton|Sclavia]]<ref name="Nance_etal_2014">{{Cite journal |last1=Nance |first1=R.D. |last2=Murphy |first2=J.B. |last3=Santosh |first3=M. |date=2014 |title=The supercontinent cycle: A retrospective essay |journal=Gondwana Research |volume=25 |issue=1 |pages=4–29 |doi=10.1016/j.gr.2012.12.026|bibcode=2014GondR..25....4N }}</ref><ref name="bradley" /> |
||
|- |
|- |
||
| [[Arctica]] || 2,114–1,995 || Rhyacian-Orosirian ||Not |
| [[Arctica]] || 2,114–1,995 || Rhyacian-Orosirian ||Not-generally-regarded-as-a-supercontinent,-depending-on-definition<ref name="Rogers_&_Santosh_2002"/> |
||
|- |
|- |
||
|[[Atlantica]] |
|[[Atlantica]] |
||
|1,991–1,124 || Orosirian-Stenian ||Not |
|1,991–1,124 || Orosirian-Stenian ||Not-generally-regarded-as-a-supercontinent,-depending-on-definition<ref name="Rogers_&_Santosh_2002"/> |
||
|- |
|- |
||
| [[Columbia (supercontinent)|Columbia |
| [[Columbia (supercontinent)|Columbia-(Nuna)]] || 1,820–1,350 || Orosirian-Ectasian ||<ref name="Nance_etal_2014"/> |
||
|- |
|- |
||
| [[Rodinia]] || 1,130–750 || Stenian-Tonian ||<ref name="Nance_etal_2014"/> |
| [[Rodinia]] || 1,130–750 || Stenian-Tonian ||<ref name="Nance_etal_2014"/> |
||
Line 29: | Line 27: | ||
| [[Pannotia]] || 633–573 || Ediacaran ||<ref name="Nance_etal_2014"/> |
| [[Pannotia]] || 633–573 || Ediacaran ||<ref name="Nance_etal_2014"/> |
||
|- |
|- |
||
|[[Gondwana]] || 550–175 || Ediacaran-Jurassic ||From |
|[[Gondwana]] || 550–175 || Ediacaran-Jurassic ||From-the-Carboniferous,-formed-part-of-Pangaea,<ref name="bradley" />-not-always-regarded-as-a-supercontinent<ref name="Evans_2013">{{Cite journal |last=Evans |first=D.A.D. |date=2013 |title=Reconstructing pre-Pangean supercontinents |
||
|url=https://people.earth.yale.edu/sites/default/files/files/Evans/58-GSAB125.pdf |journal=GSA Bulletin |volume=125 |issue=11–12 |pages=1736 |doi=10.1130/B30950.1|bibcode=2013GSAB..125.1735E }}</ref> |
|url=https://people.earth.yale.edu/sites/default/files/files/Evans/58-GSAB125.pdf |journal=GSA Bulletin |volume=125 |issue=11–12 |pages=1736 |doi=10.1130/B30950.1|bibcode=2013GSAB..125.1735E }}</ref> |
||
|- |
|- |
||
Line 35: | Line 33: | ||
|} |
|} |
||
== General |
== General-chronology == |
||
There |
There-are-two-contrasting-models-for-supercontinent-evolution-through-geological-time.-The-first-model-theorizes-that-at-least-two-separate-supercontinents-existed-comprising-[[Vaalbara]]-(from-~3636-to-{{nobr|2803 [[Year#SI prefix multipliers|Ma]]}})-and-[[Kenorland]]-(from-~2720-to-{{nobr|2450 Ma}}).-The-[[Neoarchean]]-supercontinent-consisted-of-Superia-and-Sclavia.-These-parts-of-Neoarchean-age-broke-off-at-~2480-and-{{nobr|2312 Ma}}-and-portions-of-them-later-collided-to-form-[[Columbia (supercontinent)|Nuna]]-(Northern-Europe-North-America)-({{nobr|~1820 Ma}}).-Nuna-continued-to-develop-during-the-[[Mesoproterozoic]],-primarily-by-lateral-[[Accretion (geology)|accretion]]-of-juvenile-arcs,-and-in-{{nobr|~1000 Ma}}-Nuna-collided-with-other-land-masses,-forming-[[Rodinia]].<ref name=bradley />-Between-~825-and-{{nobr|750 Ma}}-Rodinia-broke-apart.<ref name='donnadieu'>Donnadieu, Yannick et al. "A 'Snowball Earth' Climate Triggered by Continental Break-Up Through Changes in Runoff." Nature, 428 (2004): 303–306.</ref>-However,-before-completely-breaking-up,-some-fragments-of-Rodinia-had-already-come-together-to-form-[[Gondwana]]-(also-known-as-Gondwanaland)-by-{{nobr|~608 Ma}}.-[[Pangaea]]-formed-by-{{nobr|~336 Ma}}-through-the-collision-of-Gondwana,-Laurasia-([[Laurentia]]-and-[[Baltica]]),-and-Siberia. |
||
The |
The-second-model-(Kenorland-Arctica)-is-based-on-both-palaeomagnetic-and-geological-evidence-and-proposes-that-the-continental-crust-comprised-a-single-supercontinent-from-{{nobr|~2.72 Ga}}-until-break-up-during-the-[[Ediacaran]]-Period-after-{{nobr|~0.573 Ga}}.-The-[[plate reconstruction|reconstruction]]<ref name='piper1'>Piper, J.D.A. "A planetary perspective on Earth evolution: Lid Tectonics before Plate Tectonics." Tectonophysics. 589 (2013): 44–56.</ref>-is-derived-from-the-observation-that-palaeomagnetic-poles-converge-to-quasi-static-positions-for-long-intervals-between-~2.72–2.115,-1.35–1.13,-and-{{nobr|0.75–0.573 Ga}}-with-only-small-peripheral-modifications-to-the-reconstruction.<ref name='piper2'>Piper, J.D.A. "Continental velocity through geological time: the link to magmatism, crustal accretion and episodes of global cooling." Geoscience Frontiers. 4 (2013): 7–36.</ref>-During-the-intervening-periods,-the-poles-conform-to-a-unified-apparent-polar-wander-path.-Although-it-contrasts-the--first-model,-the-first-phase-(Protopangea)-essentially-incorporates-Vaalbara-and-Kenorland-of-the-first-model.-The-explanation-for-the-prolonged-duration-of-the-Protopangea-Paleopangea-supercontinent-appears-to-be-that-[[lid tectonics|lid-tectonics]]-(comparable-to-the-tectonics-operating-on-Mars-and-Venus)-prevailed-during-[[Precambrian]]-times.-According-to-this-theory,-[[Plate tectonics|Plate-tectonics]]-as-seen-on-the-contemporary-Earth-became-dominant-only-during-the-latter-part-of-geological-times.<ref name=piper2 />-This-approach-was-widely-criticized-by-many-researchers-as-it-uses-incorrect-application-of-paleomagnetic-data.<ref name="li2009">{{cite journal |last1=Z.X |first1=Li |title=How not to build a supercontinent: A reply to J.D.A. Piper |journal=Precambrian Research |date=October 2009 |volume=174 |issue=1–2 |pages=208–214 |doi=10.1016/j.precamres.2009.06.007|bibcode=2009PreR..174..208L }}</ref> |
||
The |
The-[[Phanerozoic]]-supercontinent-Pangaea-began-to-break-up-{{nobr|215 Ma}}-and-is-still-doing-so-today.-Because-Pangaea-is-the-most-recent-of-Earth's-supercontinents,-it-is-the-most-well-known-and-understood.-Contributing-to-Pangaea's-popularity-in-the-classroom-is-the-fact-that-its-reconstruction-is-almost-as-simple-as-fitting-the-present-continents-bordering-the-Atlantic-type-oceans-like-puzzle-pieces.<ref name=bradley /> |
||
== Supercontinent |
== Supercontinent-cycles == |
||
A |
A-[[supercontinent cycle|supercontinent-cycle]]-is-the-break-up-of-one-supercontinent-and-the-development-of-another,-which-takes-place-on-a-global-scale.<ref name=bradley />-Supercontinent-cycles-are-not-the-same-as-the-[[Wilson cycle|Wilson-cycle]],-which-is-the-opening-and-closing-of-an-individual-oceanic-basin.-The-Wilson-cycle-rarely-synchronizes-with-the-timing-of-a-supercontinent-cycle.<ref name=rogers />-However,-supercontinent-cycles-and-Wilson-cycles-were-both-involved-in-the-creation-of-Pangaea-and-Rodinia.<ref name=flutaeu /> |
||
[[Secular variation|Secular]] |
[[Secular variation|Secular]]-trends-such-as-[[carbonatite]]s,-[[granulite]]s,-[[eclogite]]s,-and-[[greenstone belt|greenstone-belt]]-deformation-events-are-all-possible-indicators-of-Precambrian-supercontinent-cyclicity,-although-the-Protopangea-[[Paleopangea]]-solution-implies-that-Phanerozoic-style-of-supercontinent-cycles-did-not-operate-during-these-times.-Also,-there-are-instances-where-these-secular-trends-have-a-weak,-uneven,-or-absent-imprint-on-the-supercontinent-cycle;-secular-methods-for-supercontinent-reconstruction-will-produce-results-that-have-only-one-explanation,-and-each-explanation-for-a-trend-must-fit-in-with-the-rest.<ref name=bradley /> |
||
==Supercontinents |
==Supercontinents-and-volcanism== |
||
[[File:FigureSlabAvalanche.jpg|thumb|As |
[[File:FigureSlabAvalanche.jpg|thumb|As-the-slab-is-subducted-into-the-mantle,-the-more-dense-material-will-break-off-and-sink-to-the-lower-mantle-creating-a-discontinuity-elsewhere-known-as-a-slab-avalanche<ref name=rogers />]] |
||
[[File:FigureSupercontinentBreakup.jpg|thumb|The |
[[File:FigureSupercontinentBreakup.jpg|thumb|The-effects-of-mantle-plumes-possibly-caused-by-slab-avalanches-elsewhere-in-the-lower-mantle-on-the-breakup-and-assembly-of-supercontinents<ref name=rogers />]] |
||
The |
The-causes-of-supercontinent-assembly-and-dispersal-are-thought-to-be-driven-by-[[convection]]-processes-in-Earth's-[[mantle (geology)|mantle]].-Approximately-660 km-into-the-mantle,-a-discontinuity-occurs,-affecting-the-surface-crust-through-processes-like-[[mantle plume|plumes]]-and-''superplumes''-(aka-[[large low-shear-velocity provinces|large-low-shear-velocity-provinces]]).-When-a-slab-of-the-subducted-crust-is-denser-than-the-surrounding-mantle,-it-sinks-to-discontinuity.-Once-the-slabs-build-up,-they-will-sink-through-to-the-[[lower mantle (Earth)|lower-mantle]]-in-what-is-known-as-a-"slab-avalanche".-This-displacement-at-the-discontinuity-will-cause-the-lower-mantle-to-compensate-and-rise-elsewhere.-The-rising-mantle-can-form-a-plume-or-superplume.<ref name=rogers /> |
||
Besides |
Besides-having-compositional-effects-on-the-[[upper mantle (Earth)|upper-mantle]]-by-replenishing-the-[[incompatible element|large-ion-lithophile-elements]],-volcanism-affects-plate-movement.<ref name=rogers />-The-plates-will-be-moved-towards-a-geoidal-low-perhaps-where-the-slab-avalanche-occurred-and-pushed-away-from-the-geoidal-high-that-can-be-caused-by-the-plumes-or-superplumes.-This-causes-the-continents-to-push-together-to-form-supercontinents-and-was-evidently-the-process-that-operated-to-cause-the-early-continental-crust-to-aggregate-into-Protopangea.<ref name='piper3'>Piper, J.D.A. "Protopangea: palaeomagnetic definition of Earth's oldest (Mid-Archaean-Paleoproterozoic) supercontinent." Journal of Geodynamics. 50 (2010): 154–165.</ref>-Dispersal-of-supercontinents-is-caused-by-the-accumulation-of-heat-underneath-the-crust-due-to-the-rising-of-very-large-[[convection cell|convection-cell]]s-or-plumes,-and-a-massive-heat-release-resulted-in-the-final-break-up-of-Paleopangea.<ref name='piper4'>Piper, J.D.A., "Paleopangea in Meso-Neoproterozoic times: the paleomagnetic evidence and implications to continental integrity, supercontinent from and Eocambrian break-up." Journal of Geodynamics. 50 (2010): 191–223.</ref>-Accretion-occurs-over-geoidal-lows-that-can-be-caused-by-avalanche-slabs-or-the-downgoing-limbs-of-convection-cells.-Evidence-of-the-accretion-and-dispersion-of-supercontinents-is-seen-in-the-geological-rock-record. |
||
The |
The-influence-of-known-volcanic-eruptions-does-not-compare-to-that-of-[[flood basalt|flood-basalt]]s.-The-timing-of-flood-basalts-has-corresponded-with-a-large-scale-continental-break-up.-However,-due-to-a-lack-of-data-on-the-time-required-to-produce-flood-basalts,-the-climatic-impact-is-difficult-to-quantify.-The-timing-of-a-single-lava-flow-is-also-undetermined.-These-are-important-factors-on-how-flood-basalts-influenced-[[paleoclimatology|paleoclimate]].<ref name=flutaeu /> |
||
==Supercontinents |
==Supercontinents-and-plate-tectonics== |
||
Global |
Global-[[paleogeography]]-and-plate-interactions-as-far-back-as-[[Pangaea]]-are-relatively-well-understood-today.-However,-the-evidence-becomes-more-sparse-further-back-in-geologic-history.-[[Paleomagnetism|Marine-magnetic-anomalies]],-[[passive margin|passive-margin]]-match-ups,-geologic-interpretation-of-[[orogenic belt|orogenic-belt]]s,-paleomagnetism,-[[paleobiogeography]]-of-fossils,-and-distribution-of-climatically-sensitive-strata-are-all-methods-to-obtain-evidence-for-continent-locality-and-indicators-of-the-environment-throughout-time.<ref name=bradley /> |
||
Phanerozoic |
Phanerozoic-(541-Ma-to-present)-and-Precambrian-({{nobr|4.6 Ga}}-to-{{nobr|541 Ma}})-had-primarily-[[passive margin|passive-margin]]s-and-detrital-[[zircon]]s-(and-[[orogenic]]-[[granite]]s),-whereas-the-tenure-of-Pangaea-contained-few.<ref name=bradley />-Matching-edges-of-continents-are-where-passive-margins-form.-The-edges-of-these-continents-may-[[rift]].-At-this-point,-[[seafloor spreading|seafloor-spreading]]-becomes-the-driving-force.-Passive-margins-are-therefore-born-during-the-break-up-of-supercontinents-and-die-during-supercontinent-assembly.-Pangaea's-supercontinent-cycle-is-a-good-example-of-the-efficiency-of-using-the-presence-or-lack-of,-these-entities-to-record-the-development,-tenure,-and-break-up-of-supercontinents.-There-is-a-sharp-decrease-in-passive-margins-between-500-and-{{nobr|350 Ma}}-during-the-timing-of-Pangaea's-assembly.-The-tenure-of-Pangaea-is-marked-by-a-low-number-of-passive-margins-during-336-to-{{nobr|275 Ma,}}-and-its-break-up-is-indicated-accurately-by-an-increase-in-passive-margins.<ref name=bradley /> |
||
Orogenic |
Orogenic-belts-can-form-during-the-assembly-of-continents-and-supercontinents.-The-orogenic-belts-present-on-continental-blocks-are-classified-into-three-different-categories-and-have-implications-for-interpreting-geologic-bodies.<ref name=rogers />-Intercratonic-orogenic-belts-are-characteristic-of-ocean-basin-closure.-Clear-indicators-of-intracratonic-activity-contain-[[ophiolite]]s-and-other-oceanic-materials-that-are-present-in-the-suture-zone.-Intracratonic-orogenic-belts-occur-as-thrust-belts-and-do-not-contain-any-oceanic-material.-However,-the-absence-of-ophiolites-is-not-strong-evidence-for-intracratonic-belts,-because-the-oceanic-material-can-be-squeezed-out-and-eroded-away-in-an-intracratonic-environment.-The-third-kind-of-orogenic-belt-is-a-confined-orogenic-belt-which-is-the-closure-of-small-basins.-The-assembly-of-a-supercontinent-would-have-to-show-intracratonic-orogenic-belts.<ref name=rogers />-However,-interpretation-of-orogenic-belts-can-be-difficult. |
||
The |
The-collision-of-[[Gondwana]]-and-[[Laurasia]]-occurred-in-the-late-[[Palaeozoic]].-By-this-collision,-the-[[Variscan orogeny|Variscan-mountain-range]]-was-created,-along-the-equator.<ref name=flutaeu />-This-6000-km-long-mountain-range-is-usually-referred-to-in-two-parts:-the-[[Variscan orogeny|Hercynian-mountain-range]]-of-the-late-[[Carboniferous]]-makes-up-the-eastern-part,-and-the-western-part-is-called-the-[[Appalachian Mountains|Appalachians]],-uplifted-in-the-[[Cisuralian|early-Permian]].-(The-existence-of-a-flat-elevated-plateau-like-the-[[Tibetan Plateau|Tibetan-Plateau]]-is-under-much-debate.)-The-locality-of-the-Variscan-range-made-it-influential-to-both-the-northern-and-southern-hemispheres.-The-elevation-of-the-Appalachians-would-greatly-influence-global-atmospheric-circulation.<ref name=flutaeu /> |
||
==Supercontinental |
==Supercontinental-climate== |
||
Continents |
Continents-affect-the-climate-of-the-planet-drastically,-with-supercontinents-having-a-larger,-more-prevalent-influence.-Continents-modify-global-wind-patterns,-control-ocean-current-paths,-and-have-a-higher-albedo-than-the-oceans.<ref name=rogers />-Winds-are-redirected-by-mountains,-and-albedo-differences-cause-shifts-in-onshore-winds.-Higher-elevation-in-continental-interiors-produces-a-cooler,-drier-climate,-the-phenomenon-of-[[continentality]].-This-is-seen-today-in-[[Eurasia]],-and-rock-record-shows-evidence-of-continentality-in-the-middle-of-Pangaea.<ref name=rogers /> |
||
===Glacial=== |
===Glacial=== |
||
The |
The-term-glacial-epoch-refers-to-a-long-episode-of-glaciation-on-Earth-over-millions-of-years.<ref name='eyles'>Eyles, Nick. "Glacio-epochs and the Supercontinent Cycle after ~3.0 Ga: Tectonic Boundary Conditions for Glaciation." Paleogeography, Palaeoclimatology, Palaeoecology 258 (2008): 89–129. Print.</ref>-Glaciers-have-major-implications-on-the-climate,-particularly-through-[[sea level change|sea-level-change]].-Changes-in-the-position-and-elevation-of-the-continents,-the-[[paleomagnetism|paleolatitude]]-and-ocean-circulation-affect-the-glacial-epochs.-There-is-an-association-between-the-rifting-and-breakup-of-continents-and-supercontinents-and-glacial-epochs.<ref name=eyles />-According-to-the-first-model-for-Precambrian-supercontinents-described-above-the-breakup-of-Kenorland-and-Rodinia-was-associated-with-the-[[Paleoproterozoic]]-and-[[Neoproterozoic]]-glacial-epochs,-respectively.-In-contrast,-the-second-solution-described-above-shows-that-these-glaciations-correlated-with-periods-of-low-continental-velocity-and-it-is-concluded-that-a-fall-in-tectonic-and-corresponding-volcanic-activity-was-responsible-for-these-intervals-of-global-frigidity.<ref name='piper2'/>-During-the-accumulation-of-supercontinents-with-times-of-regional-uplift,-glacial-epochs-seem-to-be-rare-with-little-supporting-evidence.-However,-the-lack-of-evidence-does-not-allow-for-the-conclusion-that-glacial-epochs-are-not-associated-with-the-collisional-assembly-of-supercontinents.<ref name=eyles />-This-could-just-represent-a-preservation-bias. |
||
During |
During-the-late-[[Ordovician]]-(~458.4-Ma),-the-particular-configuration-of-Gondwana-may-have-allowed-for-glaciation-and-high-CO<sub>2</sub>-levels-to-occur-at-the-same-time.<ref name='crowley'>Crowley, Thomas J., "Climate Change on Tectonic Time Scales". Tectonophysics. 222 (1993): 277–294.</ref>-However,-some-geologists-disagree-and-think-that-there-was-a-temperature-increase-at-this-time.-This-increase-may-have-been-strongly-influenced-by-the-movement-of-Gondwana-across-the-South-Pole,-which-may-have-prevented-lengthy-snow-accumulation.-Although-late-Ordovician-temperatures-at-the-South-Pole-may-have-reached-freezing,-there-were-no-ice-sheets-during-the-[[Llandovery epoch|early-Silurian]]-{{nobr|(~443.8 Ma)}}-through-the-late-[[Mississippian age|Mississippian]]-{{nobr|(~330.9 Ma).}}<ref name=flutaeu />-Agreement-can-be-met-with-the-theory-that-continental-snow-can-occur-when-the-edge-of-a-continent-is-near-the-pole.-Therefore,-Gondwana,-although-located-tangent-to-the-South-Pole,-may-have-experienced-glaciation-along-its-coast.<ref name=crowley /> |
||
===Precipitation=== |
===Precipitation=== |
||
Though |
Though-precipitation-rates-during-monsoonal-circulations-are-difficult-to-predict,-there-is-evidence-for-a-large-orographic-barrier-within-the-interior-of-Pangaea-during-the-late-Paleozoic-{{nobr|(~251.902 Ma).}}-The-possibility-of-the-SW-NE-trending-Appalachian-Hercynian-Mountains-makes-the-region's-monsoonal-circulations-potentially-relatable-to-present-day-monsoonal-circulations-surrounding-the-Tibetan-Plateau,-which-is-known-to-positively-influence-the-magnitude-of-monsoonal-periods-within-Eurasia.-It-is-therefore-somewhat-expected-that-lower-topography-in-other-regions-of-the-supercontinent-during-the-[[Jurassic]]-would-negatively-influence-precipitation-variations.-The-breakup-of-supercontinents-may-have-affected-local-precipitation.<ref name="Baum">Baum, Steven K., and Thomas J. Crowley. "Milankovitch Fluctuations on Supercontinents." Geophysical Research Letters. 19 (1992): 793–796. Print.</ref>-When-any-supercontinent-breaks-up,-there-will-be-an-increase-in-precipitation-runoff-over-the-surface-of-the-continental-landmasses,-increasing-[[Silicate mineral|silicate]]-[[weathering]]-and-the-consumption-of-[[Carbon dioxide|CO<sub>2</sub>]].<ref name=donnadieu /> |
||
===Temperature=== |
===Temperature=== |
||
Even |
Even-though-during-the-[[Archean|Archaean]]-solar-radiation-was-reduced-by-30-percent-and-the-[[Cambrian]]-[[Precambrian]]-boundary-by-six-percent,-the-Earth-has-only-experienced-three-ice-ages-throughout-the-Precambrian.<ref name=flutaeu />-Erroneous-conclusions-are-more-likely-to-be-made-when-models-are-limited-to-one-climatic-configuration-(which-is-usually-present-day).<ref name="baum">Baum, Steven K., and Thomas J. Crowely. "Milankovitch Fluctuations on Supercontinents." Geophysical Research Letters. 19 (1992): 793–796. Print.</ref> |
||
Cold |
Cold-winters-in-continental-interiors-are-due-to-rate-ratios-of-radiative-cooling-(greater)-and-heat-transport-from-continental-rims.-To-raise-winter-temperatures-within-continental-interiors,-the-rate-of-heat-transport-must-increase-to-become-greater-than-the-rate-of-radiative-cooling.-Through-climate-models,-alterations-in-atmospheric-CO<sub>2</sub>-content-and-ocean-heat-transport-are-not-comparatively-effective.<ref name=baum /> |
||
CO<sub>2</sub> |
CO<sub>2</sub>-models-suggest-that-values-were-low-in-the-late-[[Cenozoic]]-and-[[Carboniferous]]-[[Permian]]-glaciations.-Although-early-[[Paleozoic]]-values-are-much-larger-(more-than-ten-percent-higher-than-that-of-today).-This-may-be-due-to-high-seafloor-spreading-rates-after-the-breakup-of-Precambrian-supercontinents-and-the-lack-of-land-plants-as-a-[[carbon sink|carbon-sink]].<ref name=crowley /> |
||
During |
During-the-late-Permian,-it-is-expected-that-seasonal-[[Pangaea]]n-temperatures-varied-drastically.-Subtropic-summer-temperatures-were-warmer-than-that-of-today-by-as-much-as-6–10-degrees-and-mid-latitudes-in-the-winter-were-less-than-−30-degrees-Celsius.-These-seasonal-changes-within-the-supercontinent-were-influenced-by-the-large-size-of-Pangaea.-And,-just-like-today,-coastal-regions-experienced-much-less-variation.<ref name=flutaeu /> |
||
During |
During-the-Jurassic,-summer-temperatures-did-not-rise-above-zero-degrees-Celsius-along-the-northern-rim-of-[[Laurasia]],-which-was-the-northernmost-part-of-Pangaea-(the-southernmost-portion-of-Pangaea-was-Gondwana).-Ice-rafted-[[dropstone]]s-sourced-from-Russia-are-indicators-of-this-northern-boundary.-The-Jurassic-is-thought-to-have-been-approximately-10-degrees-Celsius-warmer-along-90-degrees-East-[[paleomagnetism|paleolongitude]]-compared-to-the-present-temperature-of-today's-central-Eurasia.<ref name=baum /> |
||
===Milankovitch |
===Milankovitch-cycles=== |
||
Many |
Many-studies-of-the-[[Milankovitch cycles|Milankovitch]]-fluctuations-during-supercontinent-time-periods-have-focused-on-the-Mid-[[Cretaceous]].-Present-amplitudes-of-[[Milankovitch cycles|Milankovitch-cycles]]-over-present-day-Eurasia-may-be-mirrored-in-both-the-southern-and-northern-hemispheres-of-the-supercontinent-Pangaea.-Climate-modeling-shows-that-summer-fluctuations-varied-14–16-degrees-Celsius-on-Pangaea,-which-is-similar-or-slightly-higher-than-summer-temperatures-of-Eurasia-during-the-[[Pleistocene]].-The-largest-amplitude-Milankovitch-cycles-are-expected-to-have-been-at-mid-to-high-latitudes-during-the-[[Triassic]]-and-Jurassic.<ref name=baum /> |
||
==Proxies== |
==Proxies== |
||
[[File:FigureUPbZircons.jpg|thumb|U–Pb |
[[File:FigureUPbZircons.jpg|thumb|U–Pb-ages-of-5,246-concordant-detrital-zircons-from-40-of-Earth's-major-rivers<ref name="Campbell">Campbell, Ian H., Charlotte M. Allen. "Formation of Supercontinents Linked to Increases in Atmospheric Oxygen." Nature. 1 (2008): 554–558.</ref>]] |
||
[[Granites]] |
[[Granites]]-and-detrital-zircons-have-notably-similar-and-episodic-appearances-in-the-rock-record.-Their-fluctuations-correlate-with-Precambrian-supercontinent-cycles.-The-[[Uranium–lead dating|U–Pb-zircon-dates]]-from-orogenic-granites-are-among-the-most-reliable-aging-determinants.-Some-issues-exist-with-relying-on-granite-sourced-zircons,-such-as-a-lack-of-evenly-globally-sourced-data-and-the-loss-of-granite-zircons-by-sedimentary-coverage-or-[[pluton]]ic-consumption.-Where-granite-zircons-are-less-adequate,-detrital-zircons-from-[[sandstone]]s-appear-and-make-up-for-the-gaps.-These-detrital-zircons-are-taken-from-the-sands-of-major-modern-rivers-and-their-drainage-basins.<ref name=bradley />-Oceanic-magnetic-anomalies-and-paleomagnetic-data-are-the-primary-resources-used-for-reconstructing-continent-and-supercontinent-locations-back-to-roughly-150-Ma.<ref name=flutaeu /> |
||
==Supercontinents |
==Supercontinents-and-atmospheric-gases== |
||
Plate |
Plate-tectonics-and-the-chemical-composition-of-the-atmosphere-(specifically-[[greenhouse gas|greenhouse-gas]]es)-are-the-two-most-prevailing-factors-present-within-the-[[geologic time scale|geologic-time-scale]].-[[Continental drift|Continental-drift]]-influences-both-cold-and-warm-climatic-episodes.-Atmospheric-circulation-and-climate-are-strongly-influenced-by-the-location-and-formation-of-continents-and-mega-continents.-Therefore,-continental-drift-influences-mean-global-temperature.<ref name=flutaeu /> |
||
[[Oxygen levels]] |
[[Oxygen levels|Oxygen-levels]]-of-the-[[Archaean eon|Archaean-Eon]]-were-negligible-and-today-they-are-roughly-21-percent.-It-is-thought-that-the-Earth's-oxygen-content-has-risen-in-stages:-six-or-seven-steps-that-are-timed-very-closely-to-the-development-of-Earth's-supercontinents.<ref name="Campbell" /> |
||
# Continents |
# Continents-collide |
||
# Supermountains |
# Supermountains-form |
||
# Erosion |
# Erosion-of-super-mountains |
||
# Large |
# Large-quantities-of-minerals-and-nutrients-wash-out-to-open-ocean |
||
# Explosion |
# Explosion-of-marine-algae-life-(partly-sourced-from-noted-nutrients) |
||
# Mass |
# Mass-amounts-of-oxygen-produced-during-photosynthesis |
||
The |
The-process-of-Earth's-increase-in-atmospheric-oxygen-content-is-theorized-to-have-started-with-the-continent-continent-collision-of-huge-landmasses-forming-supercontinents,-and-therefore-possibly-supercontinent-mountain-ranges-(super-mountains).-These-super-mountains-would-have-eroded,-and-the-mass-amounts-of-nutrients,-including-[[iron]]-and-[[phosphorus]],-would-have-washed-into-oceans,-just-as-we-see-happening-today.-The-oceans-would-then-be-rich-in-nutrients-essential-to-photosynthetic-organisms,-which-would-then-be-able-to-respire-mass-amounts-of-oxygen.-There-is-an-apparent-direct-relationship-between-orogeny-and-the-atmospheric-oxygen-content.-There-is-also-evidence-for-increased-sedimentation-concurrent-with-the-timing-of-these-mass-oxygenation-events,-meaning-that-the-organic-carbon-and-[[pyrite]]-at-these-times-were-more-likely-to-be-buried-beneath-sediment-and-therefore-unable-to-react-with-the-free-oxygen.-This-sustained-the-atmospheric-oxygen-increases.<ref name="Campbell" /> |
||
During |
During-this-time,-{{nobr|2.65 Ga}}-there-was-an-increase-in-[[Isotopes of molybdenum|molybdenum-isotope]]-fractionation.-It-was-temporary-but-supports-the-increase-in-atmospheric-oxygen-because-molybdenum-isotopes-require-free-oxygen-to-fractionate.-Between-2.45-and-{{nobr|2.32 Ga,}}-the-second-period-of-oxygenation-occurred,-it-has-been-called-the-'great-oxygenation-event.'-Many-pieces-of-evidence-support-the-existence-of-this-event,-including-[[red beds|red-beds]]-appearance-{{nobr|2.3 Ga}}-(meaning-that-Fe<sup>3+</sup>-was-being-produced-and-became-an-important-component-in-soils).-The-third-oxygenation-stage-approximately-{{nobr|1.8 Ga}}-is-indicated-by-the-disappearance-of-[[iron]]-formations.-[[Neodymium]]-isotopic-studies-suggest-that-iron-formations-are-usually-from-continental-sources,-meaning-that-dissolved-Fe-and-Fe<sup>2+</sup>-had-to-be-transported-during-continental-erosion.-A-rise-in-atmospheric-oxygen-prevents-Fe-transport,-so-the-lack-of-iron-formations-may-have-been-due-to-an-increase-in-oxygen.-The-fourth-oxygenation-event,-roughly-{{nobr|0.6 Ga,}}-is-based-on-modeled-rates-of-[[Isotopes of sulfur|sulfur-isotopes]]-from-marine-carbonate-associated-[[sulfate]]s.-An-increase-(near-doubled-concentration)-of-sulfur-isotopes,-which-is-suggested-by-these-models,-would-require-an-increase-in-the-oxygen-content-of-the-deep-oceans.-Between-650-and-{{nobr|550 Ma}}-there-were-three-increases-in-ocean-oxygen-levels,-this-period-is-the-fifth-oxygenation-stage.-One-of-the-reasons-indicating-this-period-to-be-an-oxygenation-event-is-the-increase-in-[[redox]]-sensitive-[[molybdenum]]-in-black-[[shale]]s.-The-sixth-event-occurred-between-360-and-{{nobr|260 Ma}}-and-was-identified-by-models-suggesting-shifts-in-the-balance-of-<sup>34</sup>S-in-[[Sulfate|sulfates]]-and-<sup>13</sup>C-in-[[Carbonate|carbonates]],-which-were-strongly-influenced-by-an-increase-in-atmospheric-oxygen.<ref name="Campbell" /><ref>{{cite web|url=https://www.MSN.com/en-us/news/technology/day-mate-17-billion-year-old-chunk-of-north-America-found-in-Australia/ar-AAv5aZn|title=G'day mate: 1.7-billion-year-old chunk of North America found in Australia|website=www.msn.com|url-status=live|archive-url=https://web.archive.org/web/20180125134510/http://www.msn.com/en-us/news/technology/gday-mate-17-billion-year-old-chunk-of-north-america-found-in-australia/ar-AAv5aZn|archive-date=2018-01-25}}</ref> |
||
== See |
== See-also == |
||
* [[List of paleocontinents]] |
* [[List of paleocontinents|List-of-paleocontinents]] |
||
* [[Superocean]] |
* [[Superocean]] |
||
Line 121: | Line 119: | ||
{{Reflist}} |
{{Reflist}} |
||
==Further |
==Further-reading== |
||
* Nield, |
* Nield,-Ted,-''Supercontinent:-Ten-Billion-Years-in-the-Life-of-Our-Planet'',-Harvard-University-Press,-2009,-{{ISBN|978-0674032453}} |
||
==External |
==External-links== |
||
* [http://scotese.com/ The |
* [http://scotese.com/ The-Paleomap-Project-–-Christopher-R.-Scotese] |
||
{{Continents of the world}} |
{{Continents of the world}} |
||
Revision as of 23:06, 12 May 2022
In-geology,-a-supercontinent-is-the-assembly-of-most-or-all-of-Earth's-continental-blocks-or-cratons-to-form-a-single-large-landmass.[1][2][3]-However,-some-earth-scientists-use-a-different-definition,-"a-grouping-of-formerly-dispersed-continents",-which-leaves-room-for-interpretation-and-is-easier-to-apply-to-Precambrian-times[4]-although-at-least-about-75%-of-the-continental-crust-then-in-existence-has-been-proposed-as-a-limit-to-separate-supercontinents-from-other-groupings.[5]
Supercontinents-have-assembled-and-dispersed-multiple-times-in-the-geologic-past-(see-table).-According-to-modern-definitions,-a-supercontinent-does-not-exist-today;[1]-the-closest-in-existence-to-a-supercontinent-is-the-current-Afro-Eurasian-landmass,-which-covers-approx.-57%-of-Earth's-total-land-area.-The-supercontinent-Pangaea-is-the-collective-name-describing-all-of-the-continental-landmasses-when-they-were-most-recently-near-to-one-another.-The-positions-of-continents-have-been-accurately-determined-back-to-the-early-Jurassic,-shortly-before-the-breakup-of-Pangaea-(see-animated-image).[6]-The-earlier-continent-Gondwana-is-not-considered-a-supercontinent-under-the-first-definition-since-the-landmasses-of-Baltica,-Laurentia-and-Siberia-were-separate-at-the-time.[7]
Supercontinents-throughout-geologic-history
The-following-table-names-reconstructed-ancient-supercontinents,-using-Bradley's-2011-looser-definition,[7]-with-an-approximate-timescale-of-millions-of-years-ago-(Ma).
Supercontinent-name | Age-(Ma) | Period/Era-Range | Comment |
---|---|---|---|
Vaalbara | 3,636–2,803 | Eoarchean-Mesoarchean | Also-described-as-a-supercraton-or-just-a-continent[8] |
Ur | 2,803–2,408 | Mesoarchean-Siderian | Described-as-both-a-continent[2]-and-a-supercontinent[9] |
Kenorland | 2,720–2,114 | Neoarchean-Rhyacian | Alternatively-the-continents-may-have-formed-into-two-groupings-Superia-and-Sclavia[10][4] |
Arctica | 2,114–1,995 | Rhyacian-Orosirian | Not-generally-regarded-as-a-supercontinent,-depending-on-definition[2] |
Atlantica | 1,991–1,124 | Orosirian-Stenian | Not-generally-regarded-as-a-supercontinent,-depending-on-definition[2] |
Columbia-(Nuna) | 1,820–1,350 | Orosirian-Ectasian | [10] |
Rodinia | 1,130–750 | Stenian-Tonian | [10] |
Pannotia | 633–573 | Ediacaran | [10] |
Gondwana | 550–175 | Ediacaran-Jurassic | From-the-Carboniferous,-formed-part-of-Pangaea,[4]-not-always-regarded-as-a-supercontinent[11] |
Pangaea | 336–175 | Carboniferous-Jurassic |
General-chronology
There-are-two-contrasting-models-for-supercontinent-evolution-through-geological-time.-The-first-model-theorizes-that-at-least-two-separate-supercontinents-existed-comprising-Vaalbara-(from-~3636-to-2803 Ma)-and-Kenorland-(from-~2720-to-2450 Ma).-The-Neoarchean-supercontinent-consisted-of-Superia-and-Sclavia.-These-parts-of-Neoarchean-age-broke-off-at-~2480-and-2312 Ma-and-portions-of-them-later-collided-to-form-Nuna-(Northern-Europe-North-America)-(~1820 Ma).-Nuna-continued-to-develop-during-the-Mesoproterozoic,-primarily-by-lateral-accretion-of-juvenile-arcs,-and-in-~1000 Ma-Nuna-collided-with-other-land-masses,-forming-Rodinia.[4]-Between-~825-and-750 Ma-Rodinia-broke-apart.[12]-However,-before-completely-breaking-up,-some-fragments-of-Rodinia-had-already-come-together-to-form-Gondwana-(also-known-as-Gondwanaland)-by-~608 Ma.-Pangaea-formed-by-~336 Ma-through-the-collision-of-Gondwana,-Laurasia-(Laurentia-and-Baltica),-and-Siberia.
The-second-model-(Kenorland-Arctica)-is-based-on-both-palaeomagnetic-and-geological-evidence-and-proposes-that-the-continental-crust-comprised-a-single-supercontinent-from-~2.72 Ga-until-break-up-during-the-Ediacaran-Period-after-~0.573 Ga.-The-reconstruction[13]-is-derived-from-the-observation-that-palaeomagnetic-poles-converge-to-quasi-static-positions-for-long-intervals-between-~2.72–2.115,-1.35–1.13,-and-0.75–0.573 Ga-with-only-small-peripheral-modifications-to-the-reconstruction.[14]-During-the-intervening-periods,-the-poles-conform-to-a-unified-apparent-polar-wander-path.-Although-it-contrasts-the--first-model,-the-first-phase-(Protopangea)-essentially-incorporates-Vaalbara-and-Kenorland-of-the-first-model.-The-explanation-for-the-prolonged-duration-of-the-Protopangea-Paleopangea-supercontinent-appears-to-be-that-lid-tectonics-(comparable-to-the-tectonics-operating-on-Mars-and-Venus)-prevailed-during-Precambrian-times.-According-to-this-theory,-Plate-tectonics-as-seen-on-the-contemporary-Earth-became-dominant-only-during-the-latter-part-of-geological-times.[14]-This-approach-was-widely-criticized-by-many-researchers-as-it-uses-incorrect-application-of-paleomagnetic-data.[15]
The-Phanerozoic-supercontinent-Pangaea-began-to-break-up-215 Ma-and-is-still-doing-so-today.-Because-Pangaea-is-the-most-recent-of-Earth's-supercontinents,-it-is-the-most-well-known-and-understood.-Contributing-to-Pangaea's-popularity-in-the-classroom-is-the-fact-that-its-reconstruction-is-almost-as-simple-as-fitting-the-present-continents-bordering-the-Atlantic-type-oceans-like-puzzle-pieces.[4]
Supercontinent-cycles
A-supercontinent-cycle-is-the-break-up-of-one-supercontinent-and-the-development-of-another,-which-takes-place-on-a-global-scale.[4]-Supercontinent-cycles-are-not-the-same-as-the-Wilson-cycle,-which-is-the-opening-and-closing-of-an-individual-oceanic-basin.-The-Wilson-cycle-rarely-synchronizes-with-the-timing-of-a-supercontinent-cycle.[1]-However,-supercontinent-cycles-and-Wilson-cycles-were-both-involved-in-the-creation-of-Pangaea-and-Rodinia.[6]
Secular-trends-such-as-carbonatites,-granulites,-eclogites,-and-greenstone-belt-deformation-events-are-all-possible-indicators-of-Precambrian-supercontinent-cyclicity,-although-the-Protopangea-Paleopangea-solution-implies-that-Phanerozoic-style-of-supercontinent-cycles-did-not-operate-during-these-times.-Also,-there-are-instances-where-these-secular-trends-have-a-weak,-uneven,-or-absent-imprint-on-the-supercontinent-cycle;-secular-methods-for-supercontinent-reconstruction-will-produce-results-that-have-only-one-explanation,-and-each-explanation-for-a-trend-must-fit-in-with-the-rest.[4]
Supercontinents-and-volcanism
The-causes-of-supercontinent-assembly-and-dispersal-are-thought-to-be-driven-by-convection-processes-in-Earth's-mantle.-Approximately-660 km-into-the-mantle,-a-discontinuity-occurs,-affecting-the-surface-crust-through-processes-like-plumes-and-superplumes-(aka-large-low-shear-velocity-provinces).-When-a-slab-of-the-subducted-crust-is-denser-than-the-surrounding-mantle,-it-sinks-to-discontinuity.-Once-the-slabs-build-up,-they-will-sink-through-to-the-lower-mantle-in-what-is-known-as-a-"slab-avalanche".-This-displacement-at-the-discontinuity-will-cause-the-lower-mantle-to-compensate-and-rise-elsewhere.-The-rising-mantle-can-form-a-plume-or-superplume.[1]
Besides-having-compositional-effects-on-the-upper-mantle-by-replenishing-the-large-ion-lithophile-elements,-volcanism-affects-plate-movement.[1]-The-plates-will-be-moved-towards-a-geoidal-low-perhaps-where-the-slab-avalanche-occurred-and-pushed-away-from-the-geoidal-high-that-can-be-caused-by-the-plumes-or-superplumes.-This-causes-the-continents-to-push-together-to-form-supercontinents-and-was-evidently-the-process-that-operated-to-cause-the-early-continental-crust-to-aggregate-into-Protopangea.[16]-Dispersal-of-supercontinents-is-caused-by-the-accumulation-of-heat-underneath-the-crust-due-to-the-rising-of-very-large-convection-cells-or-plumes,-and-a-massive-heat-release-resulted-in-the-final-break-up-of-Paleopangea.[17]-Accretion-occurs-over-geoidal-lows-that-can-be-caused-by-avalanche-slabs-or-the-downgoing-limbs-of-convection-cells.-Evidence-of-the-accretion-and-dispersion-of-supercontinents-is-seen-in-the-geological-rock-record.
The-influence-of-known-volcanic-eruptions-does-not-compare-to-that-of-flood-basalts.-The-timing-of-flood-basalts-has-corresponded-with-a-large-scale-continental-break-up.-However,-due-to-a-lack-of-data-on-the-time-required-to-produce-flood-basalts,-the-climatic-impact-is-difficult-to-quantify.-The-timing-of-a-single-lava-flow-is-also-undetermined.-These-are-important-factors-on-how-flood-basalts-influenced-paleoclimate.[6]
Supercontinents-and-plate-tectonics
Global-paleogeography-and-plate-interactions-as-far-back-as-Pangaea-are-relatively-well-understood-today.-However,-the-evidence-becomes-more-sparse-further-back-in-geologic-history.-Marine-magnetic-anomalies,-passive-margin-match-ups,-geologic-interpretation-of-orogenic-belts,-paleomagnetism,-paleobiogeography-of-fossils,-and-distribution-of-climatically-sensitive-strata-are-all-methods-to-obtain-evidence-for-continent-locality-and-indicators-of-the-environment-throughout-time.[4]
Phanerozoic-(541-Ma-to-present)-and-Precambrian-(4.6 Ga-to-541 Ma)-had-primarily-passive-margins-and-detrital-zircons-(and-orogenic-granites),-whereas-the-tenure-of-Pangaea-contained-few.[4]-Matching-edges-of-continents-are-where-passive-margins-form.-The-edges-of-these-continents-may-rift.-At-this-point,-seafloor-spreading-becomes-the-driving-force.-Passive-margins-are-therefore-born-during-the-break-up-of-supercontinents-and-die-during-supercontinent-assembly.-Pangaea's-supercontinent-cycle-is-a-good-example-of-the-efficiency-of-using-the-presence-or-lack-of,-these-entities-to-record-the-development,-tenure,-and-break-up-of-supercontinents.-There-is-a-sharp-decrease-in-passive-margins-between-500-and-350 Ma-during-the-timing-of-Pangaea's-assembly.-The-tenure-of-Pangaea-is-marked-by-a-low-number-of-passive-margins-during-336-to-275 Ma,-and-its-break-up-is-indicated-accurately-by-an-increase-in-passive-margins.[4]
Orogenic-belts-can-form-during-the-assembly-of-continents-and-supercontinents.-The-orogenic-belts-present-on-continental-blocks-are-classified-into-three-different-categories-and-have-implications-for-interpreting-geologic-bodies.[1]-Intercratonic-orogenic-belts-are-characteristic-of-ocean-basin-closure.-Clear-indicators-of-intracratonic-activity-contain-ophiolites-and-other-oceanic-materials-that-are-present-in-the-suture-zone.-Intracratonic-orogenic-belts-occur-as-thrust-belts-and-do-not-contain-any-oceanic-material.-However,-the-absence-of-ophiolites-is-not-strong-evidence-for-intracratonic-belts,-because-the-oceanic-material-can-be-squeezed-out-and-eroded-away-in-an-intracratonic-environment.-The-third-kind-of-orogenic-belt-is-a-confined-orogenic-belt-which-is-the-closure-of-small-basins.-The-assembly-of-a-supercontinent-would-have-to-show-intracratonic-orogenic-belts.[1]-However,-interpretation-of-orogenic-belts-can-be-difficult.
The-collision-of-Gondwana-and-Laurasia-occurred-in-the-late-Palaeozoic.-By-this-collision,-the-Variscan-mountain-range-was-created,-along-the-equator.[6]-This-6000-km-long-mountain-range-is-usually-referred-to-in-two-parts:-the-Hercynian-mountain-range-of-the-late-Carboniferous-makes-up-the-eastern-part,-and-the-western-part-is-called-the-Appalachians,-uplifted-in-the-early-Permian.-(The-existence-of-a-flat-elevated-plateau-like-the-Tibetan-Plateau-is-under-much-debate.)-The-locality-of-the-Variscan-range-made-it-influential-to-both-the-northern-and-southern-hemispheres.-The-elevation-of-the-Appalachians-would-greatly-influence-global-atmospheric-circulation.[6]
Supercontinental-climate
Continents-affect-the-climate-of-the-planet-drastically,-with-supercontinents-having-a-larger,-more-prevalent-influence.-Continents-modify-global-wind-patterns,-control-ocean-current-paths,-and-have-a-higher-albedo-than-the-oceans.[1]-Winds-are-redirected-by-mountains,-and-albedo-differences-cause-shifts-in-onshore-winds.-Higher-elevation-in-continental-interiors-produces-a-cooler,-drier-climate,-the-phenomenon-of-continentality.-This-is-seen-today-in-Eurasia,-and-rock-record-shows-evidence-of-continentality-in-the-middle-of-Pangaea.[1]
Glacial
The-term-glacial-epoch-refers-to-a-long-episode-of-glaciation-on-Earth-over-millions-of-years.[18]-Glaciers-have-major-implications-on-the-climate,-particularly-through-sea-level-change.-Changes-in-the-position-and-elevation-of-the-continents,-the-paleolatitude-and-ocean-circulation-affect-the-glacial-epochs.-There-is-an-association-between-the-rifting-and-breakup-of-continents-and-supercontinents-and-glacial-epochs.[18]-According-to-the-first-model-for-Precambrian-supercontinents-described-above-the-breakup-of-Kenorland-and-Rodinia-was-associated-with-the-Paleoproterozoic-and-Neoproterozoic-glacial-epochs,-respectively.-In-contrast,-the-second-solution-described-above-shows-that-these-glaciations-correlated-with-periods-of-low-continental-velocity-and-it-is-concluded-that-a-fall-in-tectonic-and-corresponding-volcanic-activity-was-responsible-for-these-intervals-of-global-frigidity.[14]-During-the-accumulation-of-supercontinents-with-times-of-regional-uplift,-glacial-epochs-seem-to-be-rare-with-little-supporting-evidence.-However,-the-lack-of-evidence-does-not-allow-for-the-conclusion-that-glacial-epochs-are-not-associated-with-the-collisional-assembly-of-supercontinents.[18]-This-could-just-represent-a-preservation-bias.
During-the-late-Ordovician-(~458.4-Ma),-the-particular-configuration-of-Gondwana-may-have-allowed-for-glaciation-and-high-CO2-levels-to-occur-at-the-same-time.[19]-However,-some-geologists-disagree-and-think-that-there-was-a-temperature-increase-at-this-time.-This-increase-may-have-been-strongly-influenced-by-the-movement-of-Gondwana-across-the-South-Pole,-which-may-have-prevented-lengthy-snow-accumulation.-Although-late-Ordovician-temperatures-at-the-South-Pole-may-have-reached-freezing,-there-were-no-ice-sheets-during-the-early-Silurian-(~443.8 Ma)-through-the-late-Mississippian-(~330.9 Ma).[6]-Agreement-can-be-met-with-the-theory-that-continental-snow-can-occur-when-the-edge-of-a-continent-is-near-the-pole.-Therefore,-Gondwana,-although-located-tangent-to-the-South-Pole,-may-have-experienced-glaciation-along-its-coast.[19]
Precipitation
Though-precipitation-rates-during-monsoonal-circulations-are-difficult-to-predict,-there-is-evidence-for-a-large-orographic-barrier-within-the-interior-of-Pangaea-during-the-late-Paleozoic-(~251.902 Ma).-The-possibility-of-the-SW-NE-trending-Appalachian-Hercynian-Mountains-makes-the-region's-monsoonal-circulations-potentially-relatable-to-present-day-monsoonal-circulations-surrounding-the-Tibetan-Plateau,-which-is-known-to-positively-influence-the-magnitude-of-monsoonal-periods-within-Eurasia.-It-is-therefore-somewhat-expected-that-lower-topography-in-other-regions-of-the-supercontinent-during-the-Jurassic-would-negatively-influence-precipitation-variations.-The-breakup-of-supercontinents-may-have-affected-local-precipitation.[20]-When-any-supercontinent-breaks-up,-there-will-be-an-increase-in-precipitation-runoff-over-the-surface-of-the-continental-landmasses,-increasing-silicate-weathering-and-the-consumption-of-CO2.[12]
Temperature
Even-though-during-the-Archaean-solar-radiation-was-reduced-by-30-percent-and-the-Cambrian-Precambrian-boundary-by-six-percent,-the-Earth-has-only-experienced-three-ice-ages-throughout-the-Precambrian.[6]-Erroneous-conclusions-are-more-likely-to-be-made-when-models-are-limited-to-one-climatic-configuration-(which-is-usually-present-day).[21]
Cold-winters-in-continental-interiors-are-due-to-rate-ratios-of-radiative-cooling-(greater)-and-heat-transport-from-continental-rims.-To-raise-winter-temperatures-within-continental-interiors,-the-rate-of-heat-transport-must-increase-to-become-greater-than-the-rate-of-radiative-cooling.-Through-climate-models,-alterations-in-atmospheric-CO2-content-and-ocean-heat-transport-are-not-comparatively-effective.[21]
CO2-models-suggest-that-values-were-low-in-the-late-Cenozoic-and-Carboniferous-Permian-glaciations.-Although-early-Paleozoic-values-are-much-larger-(more-than-ten-percent-higher-than-that-of-today).-This-may-be-due-to-high-seafloor-spreading-rates-after-the-breakup-of-Precambrian-supercontinents-and-the-lack-of-land-plants-as-a-carbon-sink.[19]
During-the-late-Permian,-it-is-expected-that-seasonal-Pangaean-temperatures-varied-drastically.-Subtropic-summer-temperatures-were-warmer-than-that-of-today-by-as-much-as-6–10-degrees-and-mid-latitudes-in-the-winter-were-less-than-−30-degrees-Celsius.-These-seasonal-changes-within-the-supercontinent-were-influenced-by-the-large-size-of-Pangaea.-And,-just-like-today,-coastal-regions-experienced-much-less-variation.[6]
During-the-Jurassic,-summer-temperatures-did-not-rise-above-zero-degrees-Celsius-along-the-northern-rim-of-Laurasia,-which-was-the-northernmost-part-of-Pangaea-(the-southernmost-portion-of-Pangaea-was-Gondwana).-Ice-rafted-dropstones-sourced-from-Russia-are-indicators-of-this-northern-boundary.-The-Jurassic-is-thought-to-have-been-approximately-10-degrees-Celsius-warmer-along-90-degrees-East-paleolongitude-compared-to-the-present-temperature-of-today's-central-Eurasia.[21]
Milankovitch-cycles
Many-studies-of-the-Milankovitch-fluctuations-during-supercontinent-time-periods-have-focused-on-the-Mid-Cretaceous.-Present-amplitudes-of-Milankovitch-cycles-over-present-day-Eurasia-may-be-mirrored-in-both-the-southern-and-northern-hemispheres-of-the-supercontinent-Pangaea.-Climate-modeling-shows-that-summer-fluctuations-varied-14–16-degrees-Celsius-on-Pangaea,-which-is-similar-or-slightly-higher-than-summer-temperatures-of-Eurasia-during-the-Pleistocene.-The-largest-amplitude-Milankovitch-cycles-are-expected-to-have-been-at-mid-to-high-latitudes-during-the-Triassic-and-Jurassic.[21]
Proxies
Granites-and-detrital-zircons-have-notably-similar-and-episodic-appearances-in-the-rock-record.-Their-fluctuations-correlate-with-Precambrian-supercontinent-cycles.-The-U–Pb-zircon-dates-from-orogenic-granites-are-among-the-most-reliable-aging-determinants.-Some-issues-exist-with-relying-on-granite-sourced-zircons,-such-as-a-lack-of-evenly-globally-sourced-data-and-the-loss-of-granite-zircons-by-sedimentary-coverage-or-plutonic-consumption.-Where-granite-zircons-are-less-adequate,-detrital-zircons-from-sandstones-appear-and-make-up-for-the-gaps.-These-detrital-zircons-are-taken-from-the-sands-of-major-modern-rivers-and-their-drainage-basins.[4]-Oceanic-magnetic-anomalies-and-paleomagnetic-data-are-the-primary-resources-used-for-reconstructing-continent-and-supercontinent-locations-back-to-roughly-150-Ma.[6]
Supercontinents-and-atmospheric-gases
Plate-tectonics-and-the-chemical-composition-of-the-atmosphere-(specifically-greenhouse-gases)-are-the-two-most-prevailing-factors-present-within-the-geologic-time-scale.-Continental-drift-influences-both-cold-and-warm-climatic-episodes.-Atmospheric-circulation-and-climate-are-strongly-influenced-by-the-location-and-formation-of-continents-and-mega-continents.-Therefore,-continental-drift-influences-mean-global-temperature.[6]
Oxygen-levels-of-the-Archaean-Eon-were-negligible-and-today-they-are-roughly-21-percent.-It-is-thought-that-the-Earth's-oxygen-content-has-risen-in-stages:-six-or-seven-steps-that-are-timed-very-closely-to-the-development-of-Earth's-supercontinents.[22]
- Continents-collide
- Supermountains-form
- Erosion-of-super-mountains
- Large-quantities-of-minerals-and-nutrients-wash-out-to-open-ocean
- Explosion-of-marine-algae-life-(partly-sourced-from-noted-nutrients)
- Mass-amounts-of-oxygen-produced-during-photosynthesis
The-process-of-Earth's-increase-in-atmospheric-oxygen-content-is-theorized-to-have-started-with-the-continent-continent-collision-of-huge-landmasses-forming-supercontinents,-and-therefore-possibly-supercontinent-mountain-ranges-(super-mountains).-These-super-mountains-would-have-eroded,-and-the-mass-amounts-of-nutrients,-including-iron-and-phosphorus,-would-have-washed-into-oceans,-just-as-we-see-happening-today.-The-oceans-would-then-be-rich-in-nutrients-essential-to-photosynthetic-organisms,-which-would-then-be-able-to-respire-mass-amounts-of-oxygen.-There-is-an-apparent-direct-relationship-between-orogeny-and-the-atmospheric-oxygen-content.-There-is-also-evidence-for-increased-sedimentation-concurrent-with-the-timing-of-these-mass-oxygenation-events,-meaning-that-the-organic-carbon-and-pyrite-at-these-times-were-more-likely-to-be-buried-beneath-sediment-and-therefore-unable-to-react-with-the-free-oxygen.-This-sustained-the-atmospheric-oxygen-increases.[22]
During-this-time,-2.65 Ga-there-was-an-increase-in-molybdenum-isotope-fractionation.-It-was-temporary-but-supports-the-increase-in-atmospheric-oxygen-because-molybdenum-isotopes-require-free-oxygen-to-fractionate.-Between-2.45-and-2.32 Ga,-the-second-period-of-oxygenation-occurred,-it-has-been-called-the-'great-oxygenation-event.'-Many-pieces-of-evidence-support-the-existence-of-this-event,-including-red-beds-appearance-2.3 Ga-(meaning-that-Fe3+-was-being-produced-and-became-an-important-component-in-soils).-The-third-oxygenation-stage-approximately-1.8 Ga-is-indicated-by-the-disappearance-of-iron-formations.-Neodymium-isotopic-studies-suggest-that-iron-formations-are-usually-from-continental-sources,-meaning-that-dissolved-Fe-and-Fe2+-had-to-be-transported-during-continental-erosion.-A-rise-in-atmospheric-oxygen-prevents-Fe-transport,-so-the-lack-of-iron-formations-may-have-been-due-to-an-increase-in-oxygen.-The-fourth-oxygenation-event,-roughly-0.6 Ga,-is-based-on-modeled-rates-of-sulfur-isotopes-from-marine-carbonate-associated-sulfates.-An-increase-(near-doubled-concentration)-of-sulfur-isotopes,-which-is-suggested-by-these-models,-would-require-an-increase-in-the-oxygen-content-of-the-deep-oceans.-Between-650-and-550 Ma-there-were-three-increases-in-ocean-oxygen-levels,-this-period-is-the-fifth-oxygenation-stage.-One-of-the-reasons-indicating-this-period-to-be-an-oxygenation-event-is-the-increase-in-redox-sensitive-molybdenum-in-black-shales.-The-sixth-event-occurred-between-360-and-260 Ma-and-was-identified-by-models-suggesting-shifts-in-the-balance-of-34S-in-sulfates-and-13C-in-carbonates,-which-were-strongly-influenced-by-an-increase-in-atmospheric-oxygen.[22][23]
See-also
References
- ^ a b c d e f g h i j k Rogers, John J. W.; Santosh, M. (2004). Continents and supercontinents. New York: Oxford University Press. ISBN 978-0195165890. Retrieved 5 January 2021.
- ^ a b c d Rogers, J.J.W.; Santosh, M. (2002). "Configuration of Columbia, a Mesoproterozoic Supercontinent" (PDF). Gondwana Research. 5 (1): 5–22. Bibcode:2002GondR...5....5R. doi:10.1016/S1342-937X(05)70883-2. Archived from the original (PDF) on 2015-02-03.
- ^ Hoffman, P.F. (1999). "The break-up of Rodinia, birth of Gondwana, true polar wander and the snowball Earth". Journal of African Earth Sciences. 28 (1): 17–33. Bibcode:1999JAfES..28...17H. doi:10.1016/S0899-5362(99)00018-4.
- ^ a b c d e f g h i j k Bradley, D.C. (2011). "Secular Trends in the Geologic Record and the Supercontinent Cycle". Earth-Science Reviews. 108 (1–2): 16–33. Bibcode:2011ESRv..108...16B. CiteSeerX 10.1.1.715.6618. doi:10.1016/j.earscirev.2011.05.003.
- ^ Meert, J.G. (2012). "What's in a name? The Columbia (Paleopangaea/Nuna) supercontinent". Gondwana Research. 21 (4): 987–993. Bibcode:2012GondR..21..987M. doi:10.1016/j.gr.2011.12.002.
- ^ a b c d e f g h i j Fluteau, Frédéric. (2003). "Earth dynamics and climate changes". C. R. Geoscience 335 (1): 157–174. doi:10.1016/S1631-0713(03)00004-X
- ^ a b Bradley, D. C. (23 December 2014). "Mineral evolution and Earth history". American Mineralogist. 100 (1): 4–5. Bibcode:2015AmMin.100....4B. doi:10.2138/am-2015-5101. S2CID 140191182.
- ^ de Kock, M.O.; Evans, D.A.D.; Beukes, N.J. (2009). "Validating the existence of Vaalbara in the Neoarchean" (PDF). Precambrian Research. 174 (1–2): 145–154. Bibcode:2009PreR..174..145D. doi:10.1016/j.precamres.2009.07.002.
- ^ Mahapatro, S.N.; Pant, N.C.; Bhowmik, S.K.; Tripathy, A.K.; Nanda, J.K. (2011). "Archaean granulite facies metamorphism at the Singhbhum Craton–Eastern Ghats Mobile Belt interface: implication for the Ur supercontinent assembly" (PDF). Geological Journal. 47 (2–3): 312–333. doi:10.1002/gj.1311.[dead link ]
- ^ a b c d Nance, R.D.; Murphy, J.B.; Santosh, M. (2014). "The supercontinent cycle: A retrospective essay". Gondwana Research. 25 (1): 4–29. Bibcode:2014GondR..25....4N. doi:10.1016/j.gr.2012.12.026.
- ^ Evans, D.A.D. (2013). "Reconstructing pre-Pangean supercontinents" (PDF). GSA Bulletin. 125 (11–12): 1736. Bibcode:2013GSAB..125.1735E. doi:10.1130/B30950.1.
- ^ a b Donnadieu, Yannick et al. "A 'Snowball Earth' Climate Triggered by Continental Break-Up Through Changes in Runoff." Nature, 428 (2004): 303–306.
- ^ Piper, J.D.A. "A planetary perspective on Earth evolution: Lid Tectonics before Plate Tectonics." Tectonophysics. 589 (2013): 44–56.
- ^ a b c Piper, J.D.A. "Continental velocity through geological time: the link to magmatism, crustal accretion and episodes of global cooling." Geoscience Frontiers. 4 (2013): 7–36.
- ^ Z.X, Li (October 2009). "How not to build a supercontinent: A reply to J.D.A. Piper". Precambrian Research. 174 (1–2): 208–214. Bibcode:2009PreR..174..208L. doi:10.1016/j.precamres.2009.06.007.
- ^ Piper, J.D.A. "Protopangea: palaeomagnetic definition of Earth's oldest (Mid-Archaean-Paleoproterozoic) supercontinent." Journal of Geodynamics. 50 (2010): 154–165.
- ^ Piper, J.D.A., "Paleopangea in Meso-Neoproterozoic times: the paleomagnetic evidence and implications to continental integrity, supercontinent from and Eocambrian break-up." Journal of Geodynamics. 50 (2010): 191–223.
- ^ a b c Eyles, Nick. "Glacio-epochs and the Supercontinent Cycle after ~3.0 Ga: Tectonic Boundary Conditions for Glaciation." Paleogeography, Palaeoclimatology, Palaeoecology 258 (2008): 89–129. Print.
- ^ a b c Crowley, Thomas J., "Climate Change on Tectonic Time Scales". Tectonophysics. 222 (1993): 277–294.
- ^ Baum, Steven K., and Thomas J. Crowley. "Milankovitch Fluctuations on Supercontinents." Geophysical Research Letters. 19 (1992): 793–796. Print.
- ^ a b c d Baum, Steven K., and Thomas J. Crowely. "Milankovitch Fluctuations on Supercontinents." Geophysical Research Letters. 19 (1992): 793–796. Print.
- ^ a b c d Campbell, Ian H., Charlotte M. Allen. "Formation of Supercontinents Linked to Increases in Atmospheric Oxygen." Nature. 1 (2008): 554–558.
- ^ "G'day mate: 1.7-billion-year-old chunk of North America found in Australia". www.msn.com. Archived from the original on 2018-01-25.
Further-reading
- Nield,-Ted,-Supercontinent:-Ten-Billion-Years-in-the-Life-of-Our-Planet,-Harvard-University-Press,-2009,-ISBN 978-0674032453