Langbahn Team – Weltmeisterschaft

Robert W. Brooks

Robert Wolfe Brooks
Born(1952-09-16)September 16, 1952
Washington, D.C., United States
DiedSeptember 5, 2002(2002-09-05) (aged 49)
Montreal, Canada
Alma materHarvard University
Known forSpectral geometry, Riemann surfaces, circle packings, differential geometry
AwardsAlfred P. Sloan Fellowship, Guastella Fellowship
Scientific career
FieldsMathematics
InstitutionsUniversity of Maryland, University of Southern California, Technion – Israel Institute of Technology
Doctoral advisorRaoul Bott
Robert W. Brooks (1985)
Robert W. Brooks (1985)

Robert Wolfe Brooks (Washington, D.C., September 16, 1952 – Montreal, September 5, 2002) was a mathematician known for his work in spectral geometry, Riemann surfaces, circle packings, and differential geometry.

He received his Ph.D. from Harvard University in 1977; his thesis, The smooth cohomology of groups of diffeomorphisms, was written under the supervision of Raoul Bott. He worked at the University of Maryland (1979–1984), then at the University of Southern California, and then, from 1995, at the Technion in Haifa.[1]

Work

In an influential paper (Brooks 1981), Brooks proved that the bounded cohomology of a topological space is isomorphic to the bounded cohomology of its fundamental group.[2]

Honors

Selected publications

Reviewer Maung Min-Oo for MathSciNet wrote: "This is a well written survey article on the construction of isospectral manifolds which are not isometric with emphasis on hyperbolic Riemann surfaces of constant negative curvature."[3]
  • Brooks, Robert, "Form in Topology", The Magicians of Form, ed. by Robert M. Weiss. Laurelhurst Publications, 2003.

References

  1. ^ Buser, Peter (2005). "On the mathematical work of Robert Brooks". Geometry, spectral theory, groups, and dynamics. Contemp. Math. Vol. 387. Providence, RI: Amer. Math. Soc. pp. 1–35. ISBN 9780821885642. MR 2179784.
  2. ^ Ivanov, Nikolai V. (1987). "Foundations of the theory of bounded cohomology". Journal of Mathematical Sciences. 37 (3): 1090–1115. doi:10.1007/BF01086634. MR 0806562. S2CID 122503635.
  3. ^ MR967343