RAS p21 protein activator 1 or RasGAP (Ras GTPase activating protein), also known as RASA1, is a 120-kDa cytosolic human protein that provides two principal activities:
Inactivation of Ras from its active GTP-bound form to its inactive GDP-bound form by enhancing the endogenous GTPase activity of Ras, via its C-terminal GAP domain
Mitogenic signal transmission towards downstream interacting partners through its N-terminal SH2-SH3-SH2 domains
The protein encoded by this gene is located in the cytoplasm and is part of the GAP1 family of GTPase-activating proteins. The gene product stimulates the GTPase activity of normal RAS p21 but not its oncogenic counterpart. Acting as a suppressor of RAS function, the protein enhances the weak intrinsic GTPase activity of RAS proteins resulting in the inactive GDP-bound form of RAS, thereby allowing control of cellular proliferation and differentiation. Mutations leading to changes in the binding sites of either protein are associated with basal cell carcinomas. Alternative splicing results in two isoforms where the shorter isoform, lacking the N-terminal hydrophobic region but retaining the same activity, appears to be abundantly expressed in placental but not adult tissues.[5]
^Zisch AH, Pazzagli C, Freeman AL, Schneller M, Hadman M, Smith JW, Ruoslahti E, Pasquale EB (January 2000). "Replacing two conserved tyrosines of the EphB2 receptor with glutamic acid prevents binding of SH2 domains without abrogating kinase activity and biological responses". Oncogene. 19 (2): 177–87. doi:10.1038/sj.onc.1203304. PMID10644995. S2CID21872001.
^Hock B, Böhme B, Karn T, Feller S, Rübsamen-Waigmann H, Strebhardt K (July 1998). "Tyrosine-614, the major autophosphorylation site of the receptor tyrosine kinase HEK2, functions as multi-docking site for SH2-domain mediated interactions". Oncogene. 17 (2): 255–60. doi:10.1038/sj.onc.1201907. PMID9674711. S2CID25714553.
^Koehler JA, Moran MF (May 2001). "RACK1, a protein kinase C scaffolding protein, interacts with the PH domain of p120GAP". Biochem. Biophys. Res. Commun. 283 (4): 888–95. doi:10.1006/bbrc.2001.4889. PMID11350068.
^ abGiglione C, Gonfloni S, Parmeggiani A (June 2001). "Differential actions of p60c-Src and Lck kinases on the Ras regulators p120-GAP and GDP/GTP exchange factor CDC25Mm". Eur. J. Biochem. 268 (11): 3275–83. doi:10.1046/j.1432-1327.2001.02230.x. PMID11389730.
^Ger M, Zitkus Z, Valius M (October 2011). "Adaptor protein Nck1 interacts with p120 Ras GTPase-activating protein and regulates its activity". Cell. Signal. 23 (10): 1651–8. doi:10.1016/j.cellsig.2011.05.019. PMID21664272.
^Farooqui T, Kelley T, Coggeshall KM, Rampersaud AA, Yates AJ (1999). "GM1 inhibits early signaling events mediated by PDGF receptor in cultured human glioma cells". Anticancer Res. 19 (6B): 5007–13. PMID10697503.
^Ekman S, Kallin A, Engström U, Heldin CH, Rönnstrand L (March 2002). "SHP-2 is involved in heterodimer specific loss of phosphorylation of Tyr771 in the PDGF beta-receptor". Oncogene. 21 (12): 1870–5. doi:10.1038/sj.onc.1205210. PMID11896619. S2CID35823546.
Tocque B, Delumeau I, Parker F, et al. (1997). "Ras-GTPase activating protein (GAP): a putative effector for Ras". Cell. Signal. 9 (2): 153–8. doi:10.1016/S0898-6568(96)00135-0. PMID9113414.
Boon LM, Mulliken JB, Vikkula M (2005). "RASA1: variable phenotype with capillary and arteriovenous malformations". Curr. Opin. Genet. Dev. 15 (3): 265–9. doi:10.1016/j.gde.2005.03.004. PMID15917201.