Langbahn Team – Weltmeisterschaft

Katalin Vesztergombi

Katalin Vesztergombi
Born (1948-07-17) July 17, 1948 (age 76)
NationalityHungarian
SpouseLászló Lovász
Academic background
EducationFazekas Mihály Gimnázium
Alma materEötvös Loránd University
ThesisDistribution of Distances in Finite Point Sets
Doctoral advisorVera Sós
Academic work
DisciplineMathematics
InstitutionsEötvös Loránd University
Notable worksDiscrete Mathematics: Elementary and Beyond

Katalin Vesztergombi (born July 17, 1948)[1] is a Hungarian mathematician known for her contributions to graph theory and discrete geometry. A student of Vera T. Sós and a co-author of Paul Erdős, she is an emeritus associate professor at Eötvös Loránd University[2] and a member of the Hungarian Academy of Sciences.[3]

Education

As a high-school student in the 1960s, Vesztergombi became part of a special class for gifted mathematics students at Fazekas Mihály Gimnázium with her future collaborators László Lovász, József Pelikán, and others.[4] She completed her Ph.D. in 1987 at Eötvös Loránd University.[1][5] Her dissertation, Distribution of Distances in Finite Point Sets, is connected to the Erdős distinct distances problem and was supervised by Vera Sós.[5]

Contributions

Vesztergombi's research contributions include works on permutations,[PR] graph coloring and graph products,[XN] combinatorial discrepancy theory,[SS] distance problems in discrete geometry,[LD] geometric graph theory,[GR] the rectilinear crossing number of the complete graph,[CQ] and graphons.[D1][D2]

With László Lovász and József Pelikán, she is the author of the textbook Discrete Mathematics: Elementary and Beyond.[6][DM]

Personal

Vesztergombi is married to László Lovász, with whom she is also a frequent research collaborator.[7]

Selected publications

Books

DM.
Lovász, L.; Pelikán, J.; Vesztergombi, K. (2003), Discrete Mathematics: Elementary and Beyond, Undergraduate Texts in Mathematics, New York: Springer-Verlag, doi:10.1007/b97469, ISBN 0-387-95584-4, MR 1952453[6]

Research articles

PR.
Vesztergombi, K. (1974), "Permutations with restriction of middle strength", Studia Scientiarum Mathematicarum Hungarica, 9: 181–185 (1975), MR 0373917
XN.
Vesztergombi, K. (1978–1979), "Some remarks on the chromatic number of the strong product of graphs", Acta Cybernetica, 4 (2): 207–212, MR 0525046
SS.
Lovász, L.; Spencer, J.; Vesztergombi, K. (1986), "Discrepancy of set-systems and matrices", European Journal of Combinatorics, 7 (2): 151–160, doi:10.1016/S0195-6698(86)80041-5, MR 0856328
LD.
Erdős, P.; Lovász, L.; Vesztergombi, K. (1989), "On the graph of large distances", Discrete & Computational Geometry, 4 (6): 541–549, doi:10.1007/BF02187746, MR 1006077
GR.
Lovász, L.; Vesztergombi, K. (2002), "Geometric representations of graphs", Paul Erdős and his mathematics, II (Budapest, 1999), Bolyai Society Mathematical Studies, vol. 11, Budapest: János Bolyai Mathematical Society, pp. 471–498, MR 1954739
CQ.
Lovász, László; Vesztergombi, Katalin; Wagner, Uli; Welzl, Emo (2004), "Convex quadrilaterals and k-sets", Towards a theory of geometric graphs, Contemporary Mathematics, vol. 342, Providence, RI: American Mathematical Society, pp. 139–148, doi:10.1090/conm/342/06138, ISBN 978-0-8218-3484-8, MR 2065260
D1.
Borgs, C.; Chayes, J. T.; Lovász, L.; Sós, V. T.; Vesztergombi, K. (2008), "Convergent sequences of dense graphs. I. Subgraph frequencies, metric properties and testing", Advances in Mathematics, 219 (6): 1801–1851, arXiv:math/0702004, doi:10.1016/j.aim.2008.07.008, MR 2455626, S2CID 5974912
D2.
Borgs, C.; Chayes, J. T.; Lovász, L.; Sós, V. T.; Vesztergombi, K. (2012), "Convergent sequences of dense graphs II. Multiway cuts and statistical physics", Annals of Mathematics, Second Series, 176 (1): 151–219, doi:10.4007/annals.2012.176.1.2, MR 2925382

References

  1. ^ a b Vesztergombi Katalin, Hungarian Doctoral Council, retrieved 2018-02-10
  2. ^ Katalin Vesztergombi, Eötvös Loránd University, retrieved 2018-02-10
  3. ^ Vesztergombi Katalin, Hungarian Academy of Sciences, retrieved 2018-02-10
  4. ^ Taber, Keith S.; Sumida, Manabu; McClure, Lynne, eds. (2017), Teaching Gifted Learners in STEM Subjects: Developing Talent in Science, Technology, Engineering and Mathematics, Routledge Research in Achievement and Gifted Education, Routledge, pp. 92–93, ISBN 9781317448969
  5. ^ a b Katalin Vesztergombi at the Mathematics Genealogy Project
  6. ^ a b Reviews of Discrete Mathematics:
  7. ^ "Édes teher: zseni az apám (interview with László Lovász)", NOL (in Hungarian), July 12, 2013