Langbahn Team – Weltmeisterschaft

JP-10 (fuel)

JP-10 fuel (Jet Propellant 10) is a jet fuel, specified and used mainly as fuel in missiles. Being designed for military purposes, it is not a kerosene based fuel.

Developed to be a gas turbine fuel for cruise missiles,[1] it contains mainly exo-tetrahydrodicyclopentadiene (a synthetic fuel), and adamantane.[citation needed] However, it is usually classed as a single component fuel, as well as a hydrocarbon.[2] It is produced by catalytic hydrogenation of dicyclopentadiene and then isomerization.

It superseded JP-9, which is a mixture of norbornadiene-based RJ-5 fuel, tetrahydrodicyclopentadiene and methylcyclohexane, because of a lower temperature service limit and about four times lower price.[3] Since the lack of volatile methylcyclohexane makes its ignition difficult, a separate priming fluid PF-1 with about 10-12% of this additive is required for the engine start-up.[3] Its main use is in the Tomahawk missiles.[4]

The Russian equivalent is called detsilin.

Chemical properties of JP-10 fuel

Uses

JP-10 absorbs heat energy, so is endothermic with a relatively high density of 940 kg/m3. It has a low freezing point of less than −110 °C (−166 °F) and the flash point is 130 °F (54 °C). The high energy density of 39.6 MJ/L makes it ideal for military aerospace applications - its primary use. The ignition and burn chemistry has been extensively studied.[8][9][10] The exo isomer also has a low freezing point.[11][12] Its other properties have also been studied extensively.[13][14][15][16][17]

Even though its uses are mainly for the military, the relatively high cost has meant research has been undertaken to find lower costs routes including the use of cellulosic materials.[18]

Further research

Current and past areas of research focus on:

  • The pyrolysis and kinetics of the fuel.[19][20]
  • Catalytic addition of nanoparticles such as those based on cerium(IV) oxide.[21]
  • Catalysis for the endo to exo isomerisation.[22][23]
  • Use of additives in JP-10 for various enhancements.[24][25]

References

  1. ^ Aviation Fuel Properties (PDF). Coordinating Research Council. 1983. p. 3. CRC Report Nº 530. Archived from the original (PDF) on 2012-07-22. Retrieved 2023-12-06.
  2. ^ Ciccarelli, G.; Card, J. (February 2006). "Detonation in Mixtures of JP-10 Vapor and Air". AIAA Journal. 44 (2): 362–367. Bibcode:2006AIAAJ..44..362C. doi:10.2514/1.18582. ISSN 0001-1452.
  3. ^ a b Martel, Charles R. (1987). Military Jet Fuels, 1944-1987. Aero Propulsion Laboratory, Air Force Wright Aeronautical Laboratories, Air Force Systems Command, United States Air Force. p. 10.
  4. ^ Coggeshall, Katharine. "Revolutionizing Tomahawk fuel". Los Alamos National Laboratory. Archived from the original on 21 May 2020. Retrieved 20 May 2020.
  5. ^ a b c d "JP10 specs". web.stanford.edu. Retrieved 2024-05-20.
  6. ^ "h/c ratio - Google Search". www.google.com. Retrieved 2024-05-20.
  7. ^ "Heat of combustion", Wikipedia, 2024-05-08, retrieved 2024-05-20
  8. ^ "Exo-tricyclo[5.2.1.0(2.6)]decane". webbook.nist.gov. Retrieved 2023-10-03.
  9. ^ Li, S. C.; Varatharajan, B.; Williams, F. A. (December 2001). "Chemistry of JP-10 Ignition". AIAA Journal. 39 (12): 2351–2356. Bibcode:2001AIAAJ..39.2351L. doi:10.2514/2.1241. ISSN 0001-1452.
  10. ^ Davidson, D. F.; Horning, D. C.; Herbon, J. T.; Hanson, R. K. (2000-01-01). "Shock tube measurements of JP-10 ignition". Proceedings of the Combustion Institute. 28 (2): 1687–1692. Bibcode:2000PComI..28.1687D. doi:10.1016/S0082-0784(00)80568-8. ISSN 1540-7489.
  11. ^ Herbinet, Olivier; Sirjean, Baptiste; Bounaceur, Roda; Fournet, René; Battin-Leclerc, Frédérique; Scacchi, Gérard; Marquaire, Paul-Marie (2006-10-01). "Primary Mechanism of the Thermal Decomposition of Tricyclodecane". The Journal of Physical Chemistry A. 110 (39): 11298–11314. Bibcode:2006JPCA..11011298H. doi:10.1021/jp0623802. ISSN 1089-5639. PMID 17004739.
  12. ^ Wu, Junjun; Gao, Lu Gem; Ning, Hongbo; Ren, Wei; Truhlar, Donald G. (2020-06-01). "Direct dynamics of a large complex hydrocarbon reaction system: The reaction of OH with exo-tricyclodecane (the main component of Jet Propellant-10)". Combustion and Flame. 216: 82–91. Bibcode:2020CoFl..216...82W. doi:10.1016/j.combustflame.2020.02.019. ISSN 0010-2180. S2CID 216384271.
  13. ^ "Exo-tricyclo[5.2.1.0(2.6)]decane". Cheméo. Retrieved 2023-10-03.
  14. ^ Seiser, R.; Niemann, U.; Seshadri, K. (2011-01-01). "Experimental study of combustion of n-decane and JP-10 in non-premixed flows". Proceedings of the Combustion Institute. 33 (1): 1045–1052. Bibcode:2011PComI..33.1045S. doi:10.1016/j.proci.2010.06.078. ISSN 1540-7489.
  15. ^ Tao, Yujie; Xu, Rui; Wang, Kun; Shao, Jiankun; Johnson, Sarah E.; Movaghar, Ashkan; Han, Xu; Park, Ji-Woong; Lu, Tianfeng; Brezinsky, Kenneth; Egolfopoulos, Fokion N.; Davidson, David F.; Hanson, Ronald K.; Bowman, Craig T.; Wang, Hai (2018-12-01). "A Physics based approach to modeling real fuel combustion chemistry III Reaction kinetic model of JP10". Combustion and Flame. 198: 466–476. Bibcode:2018CoFl..198..466T. doi:10.1016/j.combustflame.2018.08.022. ISSN 0010-2180. S2CID 104745782.
  16. ^ Li, Heng; Liu, Guozhu; Jiang, Rongpei; Wang, Li; Zhang, Xiangwen (2015-05-01). "Experimental and kinetic modeling study of exo-TCD pyrolysis under low pressure". Combustion and Flame. 162 (5): 2177–2190. Bibcode:2015CoFl..162.2177L. doi:10.1016/j.combustflame.2015.01.015. ISSN 0010-2180.
  17. ^ Goh, K. H. H.; Geipel, P.; Hampp, F.; Lindstedt, R. P. (2013-01-01). "Regime transition from premixed to flameless oxidation in turbulent JP-10 flames". Proceedings of the Combustion Institute. 34 (2): 3311–3318. Bibcode:2013PComI..34.3311G. doi:10.1016/j.proci.2012.06.173. ISSN 1540-7489.
  18. ^ Li, Guangyi; Hou, Baolin; Wang, Aiqin; Xin, Xuliang; Cong, Yu; Wang, Xiaodong; Li, Ning; Zhang, Tao (2019-08-26). "Making JP-10 Superfuel Affordable with a Lignocellulosic Platform Compound". Angewandte Chemie International Edition. 58 (35): 12154–12158. doi:10.1002/anie.201906744. ISSN 1433-7851.
  19. ^ Chenoweth, Kimberly; van Duin, Adri C. T.; Dasgupta, Siddharth; Goddard III, William A. (2009-03-05). "Initiation Mechanisms and Kinetics of Pyrolysis and Combustion of JP-10 Hydrocarbon Jet Fuel". The Journal of Physical Chemistry A. 113 (9): 1740–1746. Bibcode:2009JPCA..113.1740C. doi:10.1021/jp8081479. ISSN 1089-5639.
  20. ^ Zhong, Bei-jing; Zeng, Zhao-mei; Zhang, Hou-zhen (2022-03-15). "An experimental and kinetic modeling study of JP-10 combustion". Fuel. 312: 122900. Bibcode:2022Fuel..31222900Z. doi:10.1016/j.fuel.2021.122900. ISSN 0016-2361.
  21. ^ Van Devener, Brian; Anderson, Scott L. (2006-09-01). "Breakdown and Combustion of JP-10 Fuel Catalyzed by Nanoparticulate CeO 2 and Fe 2 O 3". Energy & Fuels. 20 (5): 1886–1894. doi:10.1021/ef060064g. ISSN 0887-0624.
  22. ^ Huang, Ming-Yu; Wu, Jung-Chung; Shieu, Fuh-Sheng; Lin, Jiang-Jen (2011-03-01). "Preparation of high energy fuel JP-10 by acidity-adjustable chloroaluminate ionic liquid catalyst". Fuel. 90 (3): 1012–1017. Bibcode:2011Fuel...90.1012H. doi:10.1016/j.fuel.2010.11.041. ISSN 0016-2361.
  23. ^ Xing, Enhui; Mi, Zhentao; Xin, Chengwei; Wang, Li; Zhang, Xiangwen (2005-04-20). "Endo- to exo-isomerization of tetrahydrodicyclopentadiene catalyzed by commercially available zeolites". Journal of Molecular Catalysis A: Chemical. 231 (1): 161–167. doi:10.1016/j.molcata.2005.01.015. ISSN 1381-1169.
  24. ^ E, Xiu-tian-feng; Pan, Lun; Zhang, Xiangwen; Zou, Ji-Jun (2020-09-15). "Influence of quadricyclane additive on ignition and combustion properties of high-density JP-10 fuel". Fuel. 276: 118047. Bibcode:2020Fuel..27618047E. doi:10.1016/j.fuel.2020.118047. ISSN 0016-2361.
  25. ^ Chung, H. S.; Chen, C. S. H.; Kremer, R. A.; Boulton, J. R.; Burdette, G. W. (1999-05-01). "Recent Developments in High-Energy Density Liquid Hydrocarbon Fuels". Energy & Fuels. 13 (3): 641–649. doi:10.1021/ef980195k. ISSN 0887-0624.

Further reading

  • Schmidt, Eckart W. (2022). "Jet Fuel JP-10". Jet Fuels. Encyclopedia of Liquid Fuels. De Gruyter. pp. 3545–3578. doi:10.1515/9783110750287-030. ISBN 978-3-11-075028-7.