Langbahn Team – Weltmeisterschaft

HAT-P-23

HAT-P-23 / Moriah
Observation data
Epoch J2000      Equinox J2000
Constellation Delphinus
Right ascension 20h 24m 29.7235s[1]
Declination +16° 45′ 43.812″[1]
Apparent magnitude (V) 11.94[2]
Characteristics
Spectral type G0V
Apparent magnitude (J) 11.103±0.022[3]
Apparent magnitude (H) 10.846±0.022[3]
Apparent magnitude (K) 10.791±0.020[3]
Variable type Planetary transit[4]
Astrometry
Radial velocity (Rv)-14.324 km/s
Proper motion (μ) RA: 13.325(11) mas/yr[1]
Dec.: −5.505(11) mas/yr[1]
Parallax (π)2.7358 ± 0.0108 mas[1]
Distance1,192 ± 5 ly
(366 ± 1 pc)
Details[4]
Mass1.13±0.035 M
Radius1.203±0.074 R
Luminosity1.58±0.23 L
Surface gravity (log g)4.33±0.05 cgs
Temperature5905±80 K
Metallicity0.15±0.04
Rotation7.015 d[5]
Rotational velocity (v sin i)8.1±0.5 km/s
Age4.0±1.0 Gyr
Other designations
Moriah, Gaia DR2 1808938730710633984, TYC 1632-1396-1, GSC 01632-01396, 2MASS J20242972+1645437[2]
Database references
SIMBADdata

HAT-P-23 is a G-type main-sequence star 1192 light-years away. It has a rapid rotation (rotation period equal to 7 days) for its advanced age of 4 billion years, and exhibits a strong starspot activity.[6] The star may be in the process of being spun up by the giant planet on close orbit.[7] The star is enriched in heavy elements, having about 140% amount of metals compared to solar abundance.

Naming

In 2019, the HAT-P-23 star has received a proper name Moriah and planet HAT-P-23b - Jebus at an international NameExoWorlds contest.[8] These names mean the ancient name of the mount at the center of Jerusalem city, and ancient (pre-Roman) name of Jerusalem itself, respectively.

Planetary system

In 2010 a transiting hot Jupiter like planet was detected.[4] It has a measured dayside temperature of 2154±90 K.[9] The planet is believed to be on an unstable orbit, and expected to be engulfed by its parent star about 7.5+2.9
−1.8
million years from now,[4] although timing measurements of multiple transits since the discovery have been unable to detect any reduction in the orbital period.[5][10] The planetary orbit is probably aligned with the equatorial plane of the star, misalignment equal to 15±22°.[11] The color of planetary atmosphere is grey.[12] The atmosphere is mostly devoid of clouds, and shows tentatively a presence of Titanium(II) oxide.[13]

Size comparison of HAT-P-23 b and Jupiter
The HAT-P-23 planetary system[4][14][9][12]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b (Jebus) 2.09±0.111 MJ 0.0232±0.0002 1.2128868±0.0000004 0.096 85.1±1.5° 1.224±0.037 RJ

References

  1. ^ a b c d Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv:2208.00211. Bibcode:2023A&A...674A...1G. doi:10.1051/0004-6361/202243940. S2CID 244398875. Gaia DR3 record for this source at VizieR.
  2. ^ a b HAT-P-23 -- Star
  3. ^ a b c Skrutskie, Michael F.; Cutri, Roc M.; Stiening, Rae; Weinberg, Martin D.; Schneider, Stephen E.; Carpenter, John M.; Beichman, Charles A.; Capps, Richard W.; Chester, Thomas; Elias, Jonathan H.; Huchra, John P.; Liebert, James W.; Lonsdale, Carol J.; Monet, David G.; Price, Stephan; Seitzer, Patrick; Jarrett, Thomas H.; Kirkpatrick, J. Davy; Gizis, John E.; Howard, Elizabeth V.; Evans, Tracey E.; Fowler, John W.; Fullmer, Linda; Hurt, Robert L.; Light, Robert M.; Kopan, Eugene L.; Marsh, Kenneth A.; McCallon, Howard L.; Tam, Robert; Van Dyk, Schuyler D.; Wheelock, Sherry L. (1 February 2006). "The Two Micron All Sky Survey (2MASS)". The Astronomical Journal. 131 (2): 1163–1183. Bibcode:2006AJ....131.1163S. doi:10.1086/498708. ISSN 0004-6256. S2CID 18913331. Vizier catalog entry
  4. ^ a b c d e Bakos, G. Á.; Hartman, J.; Torres, G.; Latham, D. W.; Kovács, Géza; Noyes, R. W.; Fischer, D. A.; Johnson, J. A.; Marcy, G. W.; Howard, A. W.; Kipping, D.; Esquerdo, G. A.; Shporer, A.; Béky, B.; Buchhave, L. A.; Perumpilly, G.; Everett, M.; Sasselov, D. D.; Stefanik, R. P.; Lázár, J.; Papp, I.; Sári, P. (2010), "HAT-P-20b–HAT-P-23b: FOUR MASSIVE TRANSITING EXTRASOLAR PLANETS", The Astrophysical Journal, 742 (2): 116, arXiv:1008.3388, Bibcode:2011ApJ...742..116B, doi:10.1088/0004-637X/742/2/116, S2CID 119182075
  5. ^ a b Salisbury, M.A.; et al. (2021). "Monitoring of transiting exoplanets and their host stars with small aperture telescopes". New Astronomy. 83. 101477. arXiv:2008.08379. Bibcode:2021NewA...8301477S. doi:10.1016/j.newast.2020.101477.
  6. ^ Schrijver, Carolus J. (2020), "Testing the solar activity paradigm in the context of exoplanet transits", The Astrophysical Journal, 890 (2): 121, arXiv:2001.01093, Bibcode:2020ApJ...890..121S, doi:10.3847/1538-4357/ab67c1, S2CID 209862471
  7. ^ Maciejewski, G.; Fernández, M.; Aceituno, F.; Martín-Ruiz, S.; Ohlert, J.; Dimitrov, D.; Szyszka, K.; von Essen, C.; Mugrauer, M.; Bischoff, R.; Michel, K. -U.; Mallonn, M.; Stangret, M.; Moździerski, D. (2018), "Planet-star interactions with precise transit timing. I. The refined orbital decay rate for WASP-12 b and initial constraints for HAT-P-23 b, KELT-1 b, KELT-16 b, WASP-33 b, and WASP-103 b", Acta Astronomica, 68 (4): 371, arXiv:1812.02438, Bibcode:2018AcA....68..371M, doi:10.32023/0001-5237/68.4.4, S2CID 118895482
  8. ^ IAU 100 NameExoWorlds Approved Names
  9. ^ a b O'Rourke, Joseph G.; Knutson, Heather A.; Zhao, Ming; Fortney, Jonathan J.; Burrows, Adam; Agol, Eric; Deming, Drake; Désert, Jean-Michel; Howard, Andrew W.; Lewis, Nikole K.; Showman, Adam P.; Todorov, Kamen O. (2014). "WARMSPITZERAND PALOMAR NEAR-IR SECONDARY ECLIPSE PHOTOMETRY OF TWO HOT JUPITERS: WASP-48b AND HAT-P-23b". The Astrophysical Journal. 781 (2): 109. arXiv:1310.0011. Bibcode:2014ApJ...781..109O. doi:10.1088/0004-637X/781/2/109. S2CID 13149979.
  10. ^ Patra, Kishore C.; Winn, Joshua N.; Holman, Matthew J.; Gillon, Michael; Burdanov, Artem; Jehin, Emmanuel; Delrez, Laetitia; Pozuelos, Francisco J.; Barkaoui, Khalid; Benkhaldoun, Zouhair; Narita, Norio; Fukui, Akihiko; Kusakabe, Nobuhiko; Kawauchi, Kiyoe; Terada, Yuka; Bouma, L. G.; Weinberg, Nevin N.; Broome, Madelyn (2020), "The continuing search for evidence of tidal orbital decay of hot Jupiters", The Astronomical Journal, 159 (4): 150, arXiv:2002.02606, Bibcode:2020AJ....159..150P, doi:10.3847/1538-3881/ab7374, S2CID 211066260
  11. ^ Moutou, Claire; Diaz, Rodrigo F.; Udry, Stephane; Hebrard, Guillaume; Bouchy, Francois; Santerne, Alexandre; Ehrenreich, David; Arnold, Luc; Boisse, Isabelle; Bonfils, Xavier; Delfosse, Xavier; Eggenberger, Anne; Forveille, Thierry; Lagrange, Anne-Marie; Lovis, Christophe; Martinez, Patrick; Pepe, Francesco; Perrier, Christian; Queloz, Didier; Santos, Nuno C.; Segransan, Damien; Toublanc, Dominique; Troncin, Jean-Pierre; Vanhuysse, Michael; Vidal-Madjar, Alfred (2011), Spin-orbit inclinations of the exoplanetary systems HAT-P-8, HAT-P-9 HAT-P-16, and HAT-P-23, arXiv:1105.3849, Bibcode:2011A&A...533A.113M, doi:10.1051/0004-6361/201116760, S2CID 55894097
  12. ^ a b Ciceri, S.; Mancini, L.; Southworth, J.; Bruni, I.; Nikolov, N.; d'Ago, G.; Schröder, T.; Bozza, V.; Tregloan-Reed, J.; Henning, Th. (2015), "Physical properties of the HAT-P-23 and WASP-48 planetary systems from multi-colour photometry", Astronomy & Astrophysics, 577: A54, arXiv:1503.00762, Bibcode:2015A&A...577A..54C, doi:10.1051/0004-6361/201425449, S2CID 53607610
  13. ^ Weaver, Ian C.; López-Morales, Mercedes; Alam, Munazza K.; Espinoza, Néstor; Rackham, Benjamin V.; Goyal, Jayesh M.; MacDonald, Ryan J.; Lewis, Nikole K.; Apai, Dániel; Bixel, Alex; Jordán, Andrés; Kirk, James; McGruder, Chima; Osip, David J. (2021), "ACCESS: An Optical Transmission Spectrum of the High-gravity Hot Jupiter HAT-P-23b", The Astronomical Journal, 161 (6): 278, arXiv:2104.04101, Bibcode:2021AJ....161..278W, doi:10.3847/1538-3881/abf652, S2CID 233204299
  14. ^ Ramón-Fox, Felipe G.; Sada, Pedro V. (2012), "PARAMETERS OF RECENT TRANSITS OF HAT-P-23b", Revista Mexicana de Astronomía y Astrofísica, 49: 71, arXiv:1211.6481, Bibcode:2013RMxAA..49...71R