Langbahn Team – Weltmeisterschaft

Isotopes of copper

Isotopes of copper (29Cu)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
63Cu 69.2% stable
64Cu synth 12.70 h β+ 64Ni
β 64Zn
65Cu 30.9% stable
67Cu synth 61.83 h β 67Zn
Standard atomic weight Ar°(Cu)

Copper (29Cu) has two stable isotopes, 63Cu and 65Cu, along with 28 radioisotopes. The most stable radioisotope is 67Cu with a half-life of 61.83 hours. Most of the others have half-lives under a minute. Unstable copper isotopes with atomic masses below 63 tend to undergo β+ decay, while isotopes with atomic masses above 65 tend to undergo β decay. 64Cu decays by both β+ and β.[1]

There are at least 10 metastable isomers of copper, including two each for 70Cu and 75Cu. The most stable of these is 68mCu with a half-life of 3.75 minutes. The least stable is 75m2Cu with a half-life of 149 ns.[1]

List of isotopes


Nuclide
[n 1]
Z N Isotopic mass (Da)[4]
[n 2][n 3]
Half-life[1]
Decay
mode
[1]
[n 4]
Daughter
isotope

[n 5]
Spin and
parity[1]
[n 6][n 7]
Natural abundance (mole fraction)
Excitation energy[n 7] Normal proportion[1] Range of variation
55Cu 29 26 54.96604(17) 55.9(15) ms β+ 55Ni 3/2−#
β+, p (?%) 54Co
56Cu 29 27 55.9585293(69) 80.8(6) ms β+ (99.60%) 56Ni (4+)
β+, p (0.40%) 55Co
57Cu 29 28 56.94921169(54) 196.4(7) ms β+ 57Ni 3/2−
58Cu 29 29 57.94453228(60) 3.204(7) s β+ 58Ni 1+
59Cu 29 30 58.93949671(57) 81.5(5) s β+ 59Ni 3/2−
60Cu 29 31 59.9373638(17) 23.7(4) min β+ 60Ni 2+
61Cu 29 32 60.9334574(10) 3.343(16) h β+ 61Ni 3/2−
62Cu 29 33 61.9325948(07) 9.672(8) m β+ 62Ni 1+
63Cu 29 34 62.92959712(46) Stable 3/2− 0.6915(15)
64Cu 29 35 63.92976400(46) 12.7004(13) h β+ (61.52%) 64Ni 1+
β (38.48%) 64Zn
65Cu 29 36 64.92778948(69) Stable 3/2− 0.3085(15)
66Cu 29 37 65.92886880(70) 5.120(14) min β 66Zn 1+
66mCu 1154.2(14) keV 600(17) ns IT 68Cu (6)−
67Cu 29 38 66.92772949(96) 61.83(12) h β 67Zn 3/2−
68Cu 29 39 67.9296109(17) 30.9(6) s β 68Zn 1+
68mCu 721.26(8) keV 3.75(5) min IT (86%) 68Cu 6−
β (14%) 68Zn
69Cu 29 40 68.929429267(15) 2.85(15) min β 69Zn 3/2−
69mCu 2742.0(7) keV 357(2) ns IT 69Cu (13/2+)
70Cu 29 41 69.9323921(12) 44.5(2) s β 70Zn 6−
70m1Cu 101.1(3) keV 33(2) s β (52%) 70Zn 3−
IT (48%) 70Cu
70m2Cu 242.6(5) keV 6.6(2) s β (93.2%) 70Zn 1+
IT (6.8%) 70Cu
71Cu 29 42 70.9326768(16) 19.4(14) s β 71Zn 3/2−
71mCu 2755.7(6) keV 271(13) ns IT 71Cu (19/2−)
72Cu 29 43 71.9358203(15) 6.63(3) s β 72Zn 2−
72mCu 270(3) keV 1.76(3) μs IT 72Cu (6−)
73Cu 29 44 72.9366744(21) 4.20(12) s β (99.71%) 73Zn 3/2−
β, n (0.29%) 72Zn
74Cu 29 45 73.9398749(66) 1.606(9) s β (99.93%) 74Zn 2−
β, n (0.075%) 73Zn
75Cu 29 46 74.94152382(77) 1.224(3) s β (97.3%) 75Zn 5/2−
β, n (2.7%) 74Zn
75m1Cu 61.7(4) keV 0.310(8) μs IT 75Cu 1/2−
75m2Cu 66.2(4) keV 0.149(5) μs IT 75Cu 3/2−
76Cu[5] 29 47 75.9452370(21) 1.27(30) s β (?%) 76Zn (1,2)
β, n (?%) 75Zn
76mCu[5] 64.8(25) keV 637.7(55) ms β (?%) 76Zn 3−
β, n (?%) 75Zn
IT (10–17%) 76Cu
77Cu 29 48 76.9475436(13) 470.3(17) ms β (69.9%) 77Zn 5/2−
β, n (30.1%) 76Zn
78Cu 29 49 77.9519206(81)[6] 330.7(20) ms β, n (50.6%) 77Zn (6−)
β (49.4%) 78Zn
79Cu 29 50 78.95447(11) 241.3(21) ms β, n (66%) 78Zn (5/2−)
β (34%) 79Zn
80Cu 29 51 79.96062(32)# 113.3(64) ms β, n (59%) 79Zn
β (41%) 80Zn
81Cu 29 52 80.96574(32)# 73.2(68) ms β, n (81%) 80Zn 5/2−#
β (19%) 81Zn
82Cu 29 53 81.97238(43)# 34(7) ms β 82Zn
83Cu 29 54 82.97811(54)# 21# ms [>410 ns] 5/2−#
84Cu[7] 29 55 83.98527(54)#
This table header & footer:
  1. ^ mCu – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ Modes of decay:
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  5. ^ Bold symbol as daughter – Daughter product is stable.
  6. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  7. ^ a b # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

Copper nuclear magnetic resonance

Both stable isotopes of copper (63Cu and 65Cu) have nuclear spin of 3/2−, and thus produce nuclear magnetic resonance spectra, although the spectral lines are broad due to quadrupolar broadening. 63Cu is the more sensitive nucleus while 65Cu yields very slightly narrower signals. Usually though 63Cu NMR is preferred.[8]

Medical applications

Copper offers a relatively large number of radioisotopes that are potentially useful for nuclear medicine.

There is growing interest in the use of 64Cu, 62Cu, 61Cu, and 60Cu for diagnostic purposes and 67Cu and 64Cu for targeted radiotherapy. For example, 64Cu has a longer half-life than most positron-emitters (12.7 hours) and is thus ideal for diagnostic PET imaging of biological molecules.[9]

References

  1. ^ a b c d e f g Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ "Standard Atomic Weights: Copper". CIAAW. 1969.
  3. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. ^ Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  5. ^ a b Canete, L.; Giraud, S.; Kankainen, A.; Bastin, B.; Nowacki, F.; Ascher, P.; Eronen, T.; Girard Alcindor, V.; Jokinen, A.; Khanam, A.; Moore, I.D.; Nesterenko, D.; De Oliveira, F.; Penttilä, H.; Petrone, C.; Pohjalainen, I.; De Roubin, A.; Rubchenya, V.; Vilen, M.; Äystö, J. (June 2024). "Long-sought isomer turns out to be the ground state of 76Cu". Physics Letters B. 853: 138663. arXiv:2401.14018. doi:10.1016/j.physletb.2024.138663.
  6. ^ Giraud, S.; Canete, L.; Bastin, B.; Kankainen, A.; Fantina, A.F.; Gulminelli, F.; Ascher, P.; Eronen, T.; Girard-Alcindor, V.; Jokinen, A.; Khanam, A.; Moore, I.D.; Nesterenko, D.A.; de Oliveira Santos, F.; Penttilä, H.; Petrone, C.; Pohjalainen, I.; De Roubin, A.; Rubchenya, V.A.; Vilen, M.; Äystö, J. (October 2022). "Mass measurements towards doubly magic 78Ni: Hydrodynamics versus nuclear mass contribution in core-collapse supernovae". Physics Letters B. 833: 137309. doi:10.1016/j.physletb.2022.137309.
  7. ^ Shimizu, Y.; Kubo, T.; Sumikama, T.; Fukuda, N.; Takeda, H.; Suzuki, H.; Ahn, D. S.; Inabe, N.; Kusaka, K.; Ohtake, M.; Yanagisawa, Y.; Yoshida, K.; Ichikawa, Y.; Isobe, T.; Otsu, H.; Sato, H.; Sonoda, T.; Murai, D.; Iwasa, N.; Imai, N.; Hirayama, Y.; Jeong, S. C.; Kimura, S.; Miyatake, H.; Mukai, M.; Kim, D. G.; Kim, E.; Yagi, A. (8 April 2024). "Production of new neutron-rich isotopes near the N = 60 isotones Ge 92 and As 93 by in-flight fission of a 345 MeV/nucleon U 238 beam". Physical Review C. 109 (4). doi:10.1103/PhysRevC.109.044313.
  8. ^ "(Cu) Copper NMR".
  9. ^ Harris, M. "Clarity uses a cutting-edge imaging technique to guide drug development". Nature Biotechnology September 2014: 34