Langbahn Team – Weltmeisterschaft

Almost simple group

In mathematics, a group is said to be almost simple if it contains a non-abelian simple group and is contained within the automorphism group of that simple group – that is, if it fits between a (non-abelian) simple group and its automorphism group. In symbols, a group is almost simple if there is a (non-abelian) simple group S such that , where the inclusion of in is the action by conjugation, which is faithful since is has trivial center.[1]

Examples

Properties

The full automorphism group of a non-abelian simple group is a complete group (the conjugation map is an isomorphism to the automorphism group),[2] but proper subgroups of the full automorphism group need not be complete.

Structure

By the Schreier conjecture, now generally accepted as a corollary of the classification of finite simple groups, the outer automorphism group of a finite simple group is a solvable group. Thus a finite almost simple group is an extension of a solvable group by a simple group.

See also

Notes

  1. ^ Dallavolta, F.; Lucchini, A. (1995-11-15). "Generation of Almost Simple Groups". Journal of Algebra. 178 (1): 194–223. doi:10.1006/jabr.1995.1345. ISSN 0021-8693.
  2. ^ Robinson, Derek J. S. (1996), Robinson, Derek J. S. (ed.), "Subnormal Subgroups", A Course in the Theory of Groups, Graduate Texts in Mathematics, vol. 80, New York, NY: Springer, Corollary 13.5.10, doi:10.1007/978-1-4419-8594-1_13, ISBN 978-1-4419-8594-1, retrieved 2024-11-23