Vaidya-Metrik

Die Vaidya-Metrik ist eine Verallgemeinerung der kugelsymmetrischen Schwarzschild-Metrik. Sie ist nach dem indischen Physiker Prahalad Chunnilal Vaidya benannt und gilt für nichtrotierende und elektrisch neutrale Körper, deren Masse jedoch – im Gegensatz zur Schwarzschild-Metrik – aufgrund von emittierter oder absorbierter masseloser Strahlung („null dust“, z. B. Photonen oder Neutrinos, aber keine elektromagnetische Strahlung) mit der Zeit ab- oder zunimmt:

Die Vaidya-Metrik ist daher – wieder im Gegensatz zur Schwarzschild-Metrik – weder statisch noch stationär.

Anwendung

Sowohl Sterne als auch Schwarze Löcher verlieren aufgrund von Strahlungstransport bzw. Hawking-Strahlung Masse[1] oder können aufgrund einfallender Materie oder Strahlung an Masse zunehmen. Abhängig davon, ob der Massenverlust oder die -zunahme überwiegt, ist eine monoton fallende oder eine monoton steigende Funktion.

Mit der Vaidya-Metrik lassen sich solche physikalische Verhältnisse jedoch nur mit Einschränkungen modellieren:

  • zum einen berücksichtigt sie nur masselose Strahlung korrekt
  • zum anderen ist sie insofern unphysikalisch, als die Änderung der Masse sofort im ganzen Raum wirksam wird (Fernwirkung).

Eine Metrik als konsistente Lösung für verdampfende Schwarze Löcher konnte bis heute nicht gefunden werden. Daher werden für Analysen und Simulationen Kombinationen aus folgenden Metriken verwendet:

  • Vaidya-Metriken für den Bereich, in dem die Hawking-Strahlung entsteht (in der Nähe des Ereignishorizonts),
  • für etwas größere Abstände die Schwarzschild-Metrik
  • für große Entfernungen die Minkowski-Metrik der flachen Raumzeit.[2]

Mathematische Beschreibung

Vaidya-Metrik

In den natürlichen Einheiten und mit lautet das Linienelement der Vaidya-Metrik in auslaufenden Eddington-Finkelstein-Koordinaten[3]

und in einlaufenden Eddington-Finkelstein-Koordinaten

Vaidya-Bonner-Metrik

Für elektrisch geladene Körper erweitert sich die Vaidya-Metrik auf die Vaidya-Bonner-Metrik

und

wobei

Die Vaidya-Bonner-Metrik reduziert sich:

M = konst. M ≠ konst.
ungeladen
()
Schwarzschild-Metrik Vaidya-Metrik
geladen
()
Reissner-Nordström-Metrik Vaidya-Bonner-Metrik

Bedeutung der Koordinatenzeit

Die Zeitkoordinate eines feldfreien und ausreichend weit von der Masse entfernten stationären Beobachters steht mit den Koordinaten und im Verhältnis[4]

Dabei steht ein konstantes () mit

für radial auslaufende Strahlung und

ein konstantes () mit

für radial einlaufende Strahlung.

Einzelnachweise

  1. Kim, Choi & Yang: Black hole radiation in the Vaidya metric
  2. Corvin Zahn: Visualisierung der Relativitätstheorie. Koordinatenfreie und interaktive Werkzeuge. Tübingen 2008 (Volltext [PDF; abgerufen am 8. Dezember 2017] Dissertation).
  3. Shaikh, Kundu & Sen: Curvature Properties Of Vaidya Metric
  4. Thanu Padmanabhan: Gravitation: Foundation and Frontiers. Cambridge University Press, New York 2010, ISBN 978-0-521-88223-1 (englisch, Volltext in der Google-Buchsuche).