User:Ciar/sandbox
Miscellaneous facts
Interferon-alpha
- The IFN-alpha family represents a family of related and homologous proteins, each exhibiting a unique activity profile. Each IFN-a species seems to exhibit a distinct profile of activities [antiviral, antiproliferative, and stimulation of cytotoxic activities of natural killer (NK) cells and T cells]
- For the most part, the IFN-alpha species are not glycosylated, although some contain carbohydrates.
- Within each subtype of mammalian Type I IFN, there is additional variability in gene duplication. The IFN-a genes are duplicated to a much greater extent than any other subtype of Type I IFN. This observation in conjunction with the observation that the IFN-a subtypes generally possess the highest specific antiviral activity imply that physiologically, the body likely uses IFN-a as the primary antiviral defense protein and that the major function of IFN-a is defense.
Structure
- STRUCTURE: The Type I IFNs consist of five a-helices (labeled A–E) which are linked by one overhand loop (AB loop) and three shorter segments (BC, CD, and DE loops). Helices A, B, C, and E are arranged in an antiparallel fashion to form a left-handed four-helix bundle. The AB loop contains short segments of 3_10 helix and is best described in three segments labeled AB1, AB2, and AB3. In all Type I IFNs, the AB1 loop encircles and is linked to helix E by a disulfide bond. An additional disulfide bond is observed in most IFN-a subtypes but not IFN-b, which connects the N-terminus of the molecule to helix C. The AB loop is critical for high-affinity IFNAR2 binding and suggest that sequence differences in this region may hold the key to differences in biological activity between the different IFN-a subtypes.
- IFNa2 contain 165 amino acids; according to circular dichroism measurements ~68% of the residues adopt helical conformation.INFa2 is composed of five a-helices, labeled A–E, linked by one long overhand connection (AB loop) and three short segments (BC, CD and DE loops). The topology of the molecule resembles the classical up-up-down-down four-helixbundle motif; helices A, B, C, and E comprise the helix bundle.
Receptors
- The IFNs and IFN-like molecules signal through the Jak-Stat pathway. The receptor for the Type I IFNs consists of two chains, IFN-aR1 and IFN-aR2c. The ligand INF-alpha is a monomer that binds to the two-chain complex of IFN-aR1 and INF-aR2c.
Unsorted
- Type I IFNs are stable at acidic pH (pH 2) and are represented by two major subtypes, the fibroblast or beta interferon (IFN-b) and the leukocyte or alpha family of interferons (IFN-a).
The only known interferon of type II is IFN-g, which is produced exclusively by lymphocytes.
- Interferon is species-specific: the substance prepared from infected eggs protected only chicken cells from virus infection, while the similar substance prepared from mice protected only mouse cells.
- Produced by many cells in the human body by a receptor dependent feedback mechanism.
- Interferons are part of the "first-wave" immune response of the innate immune system, acting within hours, whereas antibody production takes days.
- In general, exposure of human cells to viruses or double stranded RNAs induces the production of IFN-a, IFN-b, and IFN-o species.
- The IFNs were the first of the proteins we now recognize as members of the Class II cytokine family.