Trisilane
| |||
Names | |||
---|---|---|---|
IUPAC name Trisilane | |||
Identifiers | |||
3D model (JSmol) |
|||
ChemSpider | |||
ECHA InfoCard | 100.132.113 | ||
EC Number |
| ||
PubChem CID |
|||
UNII | |||
UN number | 3194 | ||
CompTox Dashboard (EPA) |
|||
| |||
| |||
Properties | |||
H8Si3 | |||
Molar mass | 92.319 g·mol−1 | ||
Appearance | Colourless liquid | ||
Odor | Unpleasant | ||
Density | 0.743 g cm−3 | ||
Melting point | −117 °C (−179 °F; 156 K) | ||
Boiling point | 53 °C (127 °F; 326 K) | ||
Slowly decomposes[1] | |||
Vapor pressure | 12.7 kPa | ||
Hazards | |||
Occupational safety and health (OHS/OSH): | |||
Main hazards |
Pyrophoric | ||
GHS labelling: | |||
Danger | |||
H250, H261, H315, H319, H335 | |||
P210, P222, P231+P232, P261, P264, P271, P280, P302+P334, P302+P352, P304+P340, P305+P351+P338, P312, P321, P332+P313, P337+P313, P362, P370+P378, P402+P404, P403+P233, P405, P422, P501 | |||
Flash point | < −40 °C (−40 °F; 233 K) | ||
< 50 °C (122 °F; 323 K) | |||
Related compounds | |||
Related hydrosilicons |
Disilane Disilyne Silane Silylene | ||
Related compounds |
Propane | ||
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Trisilane is the silane with the formula H2Si(SiH3)2. A liquid at standard temperature and pressure, it is a silicon analogue of propane. In contrast with propane, however, trisilane ignites spontaneously in air.[2]
Synthesis
Trisilane was characterized by Alfred Stock having prepared it by the reaction of hydrochloric acid and magnesium silicide.[3][4] This reaction had been explored as early as 1857 by Friedrich Woehler and Heinrich Buff, and further investigated by Henri Moissan and Samuel Smiles in 1902.[2]
Decomposition
The key property of trisilane is its thermal lability. It degrades to silicon films and SiH4 according to this idealized equation:
- Si3H8 → Si + 2 SiH4
In terms of mechanism, this decomposition proceeds by a 1,2 hydrogen shift that produces disilanes, normal and isotetrasilanes, and normal and isopentasilanes.[5]
Because it readily decomposes to leave films of Si, trisilane has been explored a means to apply thin layers of silicon for semiconductors and similar applications.[6] Similarly, thermolysis of trisilane gives silicon nanowires.[7]
References
- ^ Alfred Walter Stewart (1926). Recent Advances in Physical and Inorganic Chemistry. Longmans, Green and Company, Limited. p. 312. Retrieved 11 May 2021.
- ^ a b P. W. Schenk (1963). "Silanes". In G. Brauer (ed.). Handbook of Preparative Inorganic Chemistry, 2nd Ed. Vol. 1. NY, NY: Academic Press. p. 680.
- ^ Stock, Alfred; Somieski, Carl (1916). "Siliciumwasserstoffe. I. Die aus Magnesiumsilicid und Säuren entstehenden Siliciumwasserstoffe". Berichte der Deutschen Chemischen Gesellschaft. 49: 111–157. doi:10.1002/cber.19160490114.
- ^ Stock, Alfred; Stiebeler, Paul; Zeidler, Friedrich (1923). "Siliciumwasserstoffe, XVI.: Die höheren Siliciumhydride". Berichte der Deutschen Chemischen Gesellschaft (A and B Series). 56 (7): 1695–1705. doi:10.1002/cber.19230560735.
- ^ Vanderwielen, A. J.; Ring, M. A.; O'Neal, H. E. (1975). "Kinetics of the thermal decomposition of methyldisilane and trisilane". Journal of the American Chemical Society. 97 (5): 993–998. doi:10.1021/ja00838a008.
- ^ United States Patent Application Publication. Pub No. US 2012/0252190 A1, OCT, 4, 2012. Zehavi et al.
- ^ Heitsch, Andrew T.; Fanfair, Dayne D.; Tuan, Hsing-Yu; Korgel, Brian A. (2008). "Solution−Liquid−Solid (SLS) Growth of Silicon Nanowires". Journal of the American Chemical Society. 130 (16): 5436–5437. doi:10.1021/ja8011353. PMID 18373344.