Langbahn Team – Weltmeisterschaft

Snub order-8 triangular tiling

Snub order-8 triangular tiling
Snub order-8 triangular tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration 3.3.3.3.3.4
Schläfli symbol s{3,8}
s(4,3,3)
Wythoff symbol | 4 3 3
Coxeter diagram
Symmetry group [8,3+], (3*4)
[(4,3,3)]+, (433)
Dual Order-4-3-3 snub dual tiling
Properties Vertex-transitive

In geometry, the snub tritetratrigonal tiling or snub order-8 triangular tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbols of s{(3,4,3)} and s{3,8}.

Images

Drawn in chiral pairs:

Symmetry

The alternated construction from the truncated order-8 triangular tiling has 2 colors of triangles and achiral symmetry. It has Schläfli symbol of s{3,8}.

Uniform (4,3,3) tilings
Symmetry: [(4,3,3)], (*433) [(4,3,3)]+, (433)
h{8,3}
t0(4,3,3)
r{3,8}1/2
t0,1(4,3,3)
h{8,3}
t1(4,3,3)
h2{8,3}
t1,2(4,3,3)
{3,8}1/2
t2(4,3,3)
h2{8,3}
t0,2(4,3,3)
t{3,8}1/2
t0,1,2(4,3,3)
s{3,8}1/2
s(4,3,3)
Uniform duals
V(3.4)3 V3.8.3.8 V(3.4)3 V3.6.4.6 V(3.3)4 V3.6.4.6 V6.6.8 V3.3.3.3.3.4
Uniform octagonal/triangular tilings
Symmetry: [8,3], (*832) [8,3]+
(832)
[1+,8,3]
(*443)
[8,3+]
(3*4)
{8,3} t{8,3} r{8,3} t{3,8} {3,8} rr{8,3}
s2{3,8}
tr{8,3} sr{8,3} h{8,3} h2{8,3} s{3,8}




or

or





Uniform duals
V83 V3.16.16 V3.8.3.8 V6.6.8 V38 V3.4.8.4 V4.6.16 V34.8 V(3.4)3 V8.6.6 V35.4

References

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

See also