Langbahn Team – Weltmeisterschaft

Smn theorem

In computability theory the S m
n
 
theorem
, written also as "smn-theorem" or "s-m-n theorem" (also called the translation lemma, parameter theorem, and the parameterization theorem) is a basic result about programming languages (and, more generally, Gödel numberings of the computable functions) (Soare 1987, Rogers 1967). It was first proved by Stephen Cole Kleene (1943). The name S m
n
 
comes from the occurrence of an S with subscript n and superscript m in the original formulation of the theorem (see below).

In practical terms, the theorem says that for a given programming language and positive integers m and n, there exists a particular algorithm that accepts as input the source code of a program with m + n free variables, together with m values. This algorithm generates source code that effectively substitutes the values for the first m free variables, leaving the rest of the variables free.

The smn-theorem states that given a function of two arguments which is computable, there exists a total and computable function such that basically "fixing" the first argument of . It's like partially applying an argument to a function. This is generalized over tuples for . In other words, it addresses the idea of "parametrization" or "indexing" of computable functions. It's like creating a simplified version of a function that takes an additional parameter (index) to mimic the behavior of a more complex function.

The function is designed to mimic the behavior of when given the appropriate parameters. Essentially, by selecting the right values for and , you can make behave like for a specific computation. Instead of dealing with the complexity of , we can work with a simpler that captures the essence of the computation.

Details

The basic form of the theorem applies to functions of two arguments (Nies 2009, p. 6). Given a Gödel numbering of recursive functions, there is a primitive recursive function s of two arguments with the following property: for every Gödel number p of a partial computable function f with two arguments, the expressions and are defined for the same combinations of natural numbers x and y, and their values are equal for any such combination. In other words, the following extensional equality of functions holds for every x:

More generally, for any m, n > 0, there exists a primitive recursive function of m + 1 arguments that behaves as follows: for every Gödel number p of a partial computable function with m + n arguments, and all values of x1, …, xm:

The function s described above can be taken to be .

Formal statement

Given arities m and n, for every Turing Machine of arity and for all possible values of inputs , there exists a Turing machine of arity n, such that

Furthermore, there is a Turing machine S that allows k to be calculated from x and y; it is denoted .

Informally, S finds the Turing Machine that is the result of hardcoding the values of y into . The result generalizes to any Turing-complete computing model.

This can also be extended to total computable functions as follows:

Given a total computable function and such that , :

There is also a simplified version of the same theorem (defined infact as "simplified smn-theorem", which basically uses a total computable function as index as follows:

Let be a computable function. There, there is a total computable function such that , :

Example

The following Lisp code implements s11 for Lisp.

(defun s11 (f x)
  (let ((y (gensym)))
    (list 'lambda (list y) (list f x y))))

For example, (s11 '(lambda (x y) (+ x y)) 3) evaluates to (lambda (g42) ((lambda (x y) (+ x y)) 3 g42)).

See also

References