Mittag-Leffler polynomials
In mathematics, the Mittag-Leffler polynomials are the polynomials gn(x) or Mn(x) studied by Mittag-Leffler (1891).
Mn(x) is a special case of the Meixner polynomial Mn(x;b,c) at b = 0, c = -1.
Definition and examples
Generating functions
The Mittag-Leffler polynomials are defined respectively by the generating functions
- and
They also have the bivariate generating function[1]
Examples
The first few polynomials are given in the following table. The coefficients of the numerators of the can be found in the OEIS,[2] though without any references, and the coefficients of the are in the OEIS[3] as well.
n gn(x) Mn(x) 0 1 2 3 4 5 6 7 8 9 10
Properties
The polynomials are related by and we have for . Also .
Explicit formulas
Explicit formulas are
(the last one immediately shows , a kind of reflection formula), and
- , which can be also written as
- , where denotes the falling factorial.
In terms of the Gaussian hypergeometric function, we have[4]
Reflection formula
As stated above, for , we have the reflection formula .
Recursion formulas
The polynomials can be defined recursively by
- , starting with and .
Another recursion formula, which produces an odd one from the preceding even ones and vice versa, is
- , again starting with .
As for the , we have several different recursion formulas:
Concerning recursion formula (3), the polynomial is the unique polynomial solution of the difference equation , normalized so that .[5] Further note that (2) and (3) are dual to each other in the sense that for , we can apply the reflection formula to one of the identities and then swap and to obtain the other one. (As the are polynomials, the validity extends from natural to all real values of .)
Initial values
The table of the initial values of (these values are also called the "figurate numbers for the n-dimensional cross polytopes" in the OEIS[6]) may illustrate the recursion formula (1), which can be taken to mean that each entry is the sum of the three neighboring entries: to its left, above and above left, e.g. . It also illustrates the reflection formula with respect to the main diagonal, e.g. .
- nm
1 2 3 4 5 6 7 8 9 10 1 1 1 1 1 1 1 1 1 1 1 2 2 4 6 8 10 12 14 16 18 3 3 9 19 33 51 73 99 129 4 4 16 44 96 180 304 476 5 5 25 85 225 501 985 6 6 36 146 456 1182 7 7 49 231 833 8 8 64 344 9 9 81 10 10
Orthogonality relations
For the following orthogonality relation holds:[7]
(Note that this is not a complex integral. As each is an even or an odd polynomial, the imaginary arguments just produce alternating signs for their coefficients. Moreover, if and have different parity, the integral vanishes trivially.)
Binomial identity
Being a Sheffer sequence of binomial type, the Mittag-Leffler polynomials also satisfy the binomial identity[8]
- .
Integral representations
Based on the representation as a hypergeometric function, there are several ways of representing for directly as integrals,[9] some of them being even valid for complex , e.g.
- .
Closed forms of integral families
There are several families of integrals with closed-form expressions in terms of zeta values where the coefficients of the Mittag-Leffler polynomials occur as coefficients. All those integrals can be written in a form containing either a factor or , and the degree of the Mittag-Leffler polynomial varies with . One way to work out those integrals is to obtain for them the corresponding recursion formulas as for the Mittag-Leffler polynomials using integration by parts.
1. For instance,[10] define for
These integrals have the closed form
in umbral notation, meaning that after expanding the polynomial in , each power has to be replaced by the zeta value . E.g. from we get for .
2. Likewise take for
In umbral notation, where after expanding, has to be replaced by the Dirichlet eta function , those have the closed form
- .
3. The following[11] holds for with the same umbral notation for and , and completing by continuity .
Note that for , this also yields a closed form for the integrals
4. For , define[12] .
If is even and we define , we have in umbral notation, i.e. replacing by ,
Note that only odd zeta values (odd ) occur here (unless the denominators are cast as even zeta values), e.g.
5. If is odd, the same integral is much more involved to evaluate, including the initial one . Yet it turns out that the pattern subsists if we define[13] , equivalently . Then has the following closed form in umbral notation, replacing by :
- , e.g.
Note that by virtue of the logarithmic derivative of Riemann's functional equation, taken after applying Euler's reflection formula,[14] these expressions in terms of the can be written in terms of , e.g.
6. For , the same integral diverges because the integrand behaves like for . But the difference of two such integrals with corresponding degree differences is well-defined and exhibits very similar patterns, e.g.
- .
See also
References
- ^ see the formula section of OEIS A142978
- ^ see OEIS A064984
- ^ see OEIS A137513
- ^ Özmen, Nejla & Nihal, Yılmaz (2019). "On The Mittag-Leffler Polynomials and Deformed Mittag-Leffler Polynomials".
{{cite journal}}
: Cite journal requires|journal=
(help) - ^ see the comment section of OEIS A142983
- ^ see OEIS A142978
- ^ Stankovic, Miomir S.; Marinkovic, Sladjana D. & Rajkovic, Predrag M. (2010). "Deformed Mittag–Leffler Polynomials". arXiv:1007.3612.
{{cite journal}}
: Cite journal requires|journal=
(help) - ^ Mathworld entry "Mittag-Leffler Polynomial"
- ^ Bateman, H. (1940). "The polynomial of Mittag-Leffler" (PDF). Proceedings of the National Academy of Sciences of the United States of America. 26 (8): 491–496. Bibcode:1940PNAS...26..491B. doi:10.1073/pnas.26.8.491. ISSN 0027-8424. JSTOR 86958. MR 0002381. PMC 1078216. PMID 16588390.
- ^ see at the end of this question on Mathoverflow
- ^ answer on math.stackexchange
- ^ similar to this question on Mathoverflow
- ^ method used in this answer on Mathoverflow
- ^ or see formula (14) in https://mathworld.wolfram.com/RiemannZetaFunction.html
- Bateman, H. (1940), "The polynomial of Mittag-Leffler" (PDF), Proceedings of the National Academy of Sciences of the United States of America, 26 (8): 491–496, Bibcode:1940PNAS...26..491B, doi:10.1073/pnas.26.8.491, ISSN 0027-8424, JSTOR 86958, MR 0002381, PMC 1078216, PMID 16588390
- Mittag-Leffler, G. (1891), "Sur la représentasion analytique des intégrales et des invariants d'une équation différentielle linéaire et homogène", Acta Mathematica (in French), XV: 1–32, doi:10.1007/BF02392600, ISSN 0001-5962, JFM 23.0327.01
- Stankovic, Miomir S.; Marinkovic, Sladjana D.; Rajkovic, Predrag M. (2010), Deformed Mittag–Leffler Polynomials, arXiv:1007.3612