List of prime numbers
This is a list of articles about prime numbers. A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem, there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes. The first 1000 primes are listed below, followed by lists of notable types of prime numbers in alphabetical order, giving their respective first terms. 1 is neither prime nor composite.
The first 1000 prime numbers
The following table lists the first 1000 primes, with 20 columns of consecutive primes in each of the 50 rows.[1]
(sequence A000040 in the OEIS).
The Goldbach conjecture verification project reports that it has computed all primes smaller than 4×1018.[2] That means 95,676,260,903,887,607 primes[3] (nearly 1017), but they were not stored. There are known formulae to evaluate the prime-counting function (the number of primes smaller than a given value) faster than computing the primes. This has been used to compute that there are 1,925,320,391,606,803,968,923 primes (roughly 2×1021) smaller than 1023. A different computation found that there are 18,435,599,767,349,200,867,866 primes (roughly 2×1022) smaller than 1024, if the Riemann hypothesis is true.[4]
Lists of primes by type
Below are listed the first prime numbers of many named forms and types. More details are in the article for the name. n is a natural number (including 0) in the definitions.
Primes with equal-sized prime gaps after and before them, so that they are equal to the arithmetic mean of the nearest primes after and before.
- 5, 53, 157, 173, 211, 257, 263, 373, 563, 593, 607, 653, 733, 947, 977, 1103, 1123, 1187, 1223, 1367, 1511, 1747, 1753, 1907, 2287, 2417, 2677, 2903, 2963, 3307, 3313, 3637, 3733, 4013, 4409, 4457, 4597, 4657, 4691, 4993, 5107, 5113, 5303, 5387, 5393 (OEIS: A006562).
Primes that are the number of partitions of a set with n members.
2, 5, 877, 27644437, 35742549198872617291353508656626642567, 359334085968622831041960188598043661065388726959079837. The next term has 6,539 digits. (OEIS: A051131)
Where p is prime and p+2 is either a prime or semiprime.
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 47, 53, 59, 67, 71, 83, 89, 101, 107, 109, 113, 127, 131, 137, 139, 149, 157, 167, 179, 181, 191, 197, 199, 211, 227, 233, 239, 251, 257, 263, 269, 281, 293, 307, 311, 317, 337, 347, 353, 359, 379, 389, 401, 409 (OEIS: A109611)
A circular prime number is a number that remains prime on any cyclic rotation of its digits (in base 10).
2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, 97, 113, 131, 197, 199, 311, 337, 373, 719, 733, 919, 971, 991, 1193, 1931, 3119, 3779, 7793, 7937, 9311, 9377, 11939, 19391, 19937, 37199, 39119, 71993, 91193, 93719, 93911, 99371, 193939, 199933, 319993, 331999, 391939, 393919, 919393, 933199, 939193, 939391, 993319, 999331 (OEIS: A068652)
Some sources only list the smallest prime in each cycle, for example, listing 13, but omitting 31 (OEIS really calls this sequence circular primes, but not the above sequence):
2, 3, 5, 7, 11, 13, 17, 37, 79, 113, 197, 199, 337, 1193, 3779, 11939, 19937, 193939, 199933, 1111111111111111111, 11111111111111111111111 (OEIS: A016114)
All repunit primes are circular.
A cluster prime is a prime p such that every even natural number k ≤ p − 3 is the difference of two primes not exceeding p.
3, 5, 7, 11, 13, 17, 19, 23, ... (OEIS: A038134)
All odd primes between 3 and 89, inclusive, are cluster primes. The first 10 primes that are not cluster primes are:
2, 97, 127, 149, 191, 211, 223, 227, 229, 251.
Where (p, p + 4) are both prime.
(3, 7), (7, 11), (13, 17), (19, 23), (37, 41), (43, 47), (67, 71), (79, 83), (97, 101), (103, 107), (109, 113), (127, 131), (163, 167), (193, 197), (223, 227), (229, 233), (277, 281) (OEIS: A023200, OEIS: A046132)
Of the form where x = y + 1.
7, 19, 37, 61, 127, 271, 331, 397, 547, 631, 919, 1657, 1801, 1951, 2269, 2437, 2791, 3169, 3571, 4219, 4447, 5167, 5419, 6211, 7057, 7351, 8269, 9241, 10267, 11719, 12097, 13267, 13669, 16651, 19441, 19927, 22447, 23497, 24571, 25117, 26227, 27361, 33391, 35317 (OEIS: A002407)
Of the form where x = y + 2.
13, 109, 193, 433, 769, 1201, 1453, 2029, 3469, 3889, 4801, 10093, 12289, 13873, 18253, 20173, 21169, 22189, 28813, 37633, 43201, 47629, 60493, 63949, 65713, 69313, 73009, 76801, 84673, 106033, 108301, 112909, 115249 (OEIS: A002648)
Of the form n×2n + 1.
3, 393050634124102232869567034555427371542904833 (OEIS: A050920)
Primes that having any one of their (base 10) digits changed to any other value will always result in a composite number.
294001, 505447, 584141, 604171, 971767, 1062599, 1282529, 1524181, 2017963, 2474431, 2690201, 3085553, 3326489, 4393139 (OEIS: A050249)
Primes that remain prime when read upside down or mirrored in a seven-segment display.
2, 5, 11, 101, 181, 1181, 1811, 18181, 108881, 110881, 118081, 120121, 121021, 121151, 150151, 151051, 151121, 180181, 180811, 181081 (OEIS: A134996)
Eisenstein primes without imaginary part
Eisenstein integers that are irreducible and real numbers (primes of the form 3n − 1).
2, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401 (OEIS: A003627)
Primes that become a different prime when their decimal digits are reversed. The name "emirp" is the reverse of the word "prime".
13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157, 167, 179, 199, 311, 337, 347, 359, 389, 701, 709, 733, 739, 743, 751, 761, 769, 907, 937, 941, 953, 967, 971, 983, 991 (OEIS: A006567)
Of the form pn# + 1 (a subset of primorial primes).
3, 7, 31, 211, 2311, 200560490131 (OEIS: A018239[5])
A prime that divides Euler number for some .
19, 31, 43, 47, 61, 67, 71, 79, 101, 137, 139, 149, 193, 223, 241, 251, 263, 277, 307, 311, 349, 353, 359, 373, 379, 419, 433, 461, 463, 491, 509, 541, 563, 571, 577, 587 (OEIS: A120337)
Primes such that is an Euler irregular pair.
149, 241, 2946901 (OEIS: A198245)
2, 3, 5, 7, 23, 719, 5039, 39916801, 479001599, 87178291199, 10888869450418352160768000001, 265252859812191058636308479999999, 263130836933693530167218012159999999, 8683317618811886495518194401279999999 (OEIS: A088054)
Of the form 22n + 1.
3, 5, 17, 257, 65537 (OEIS: A019434)
As of June 2024 these are the only known Fermat primes, and conjecturally the only Fermat primes. The probability of the existence of another Fermat prime is less than one in a billion.[6]
Generalized Fermat primes
Of the form a2n + 1 for fixed integer a.
a = 2: 3, 5, 17, 257, 65537 (OEIS: A019434)
a = 8: (none exist)
a = 12: 13
a = 14: 197
a = 18: 19
a = 20: 401, 160001
a = 22: 23
a = 24: 577, 331777
Primes in the Fibonacci sequence F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2.
2, 3, 5, 13, 89, 233, 1597, 28657, 514229, 433494437, 2971215073, 99194853094755497, 1066340417491710595814572169, 19134702400093278081449423917 (OEIS: A005478)
Fortunate numbers that are prime (it has been conjectured they all are).
3, 5, 7, 13, 17, 19, 23, 37, 47, 59, 61, 67, 71, 79, 89, 101, 103, 107, 109, 127, 151, 157, 163, 167, 191, 197, 199, 223, 229, 233, 239, 271, 277, 283, 293, 307, 311, 313, 331, 353, 373, 379, 383, 397 (OEIS: A046066)
Prime elements of the Gaussian integers; equivalently, primes of the form 4n + 3.
3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83, 103, 107, 127, 131, 139, 151, 163, 167, 179, 191, 199, 211, 223, 227, 239, 251, 263, 271, 283, 307, 311, 331, 347, 359, 367, 379, 383, 419, 431, 439, 443, 463, 467, 479, 487, 491, 499, 503 (OEIS: A002145)
Primes pn for which pn2 > pn−i pn+i for all 1 ≤ i ≤ n−1, where pn is the nth prime.
5, 11, 17, 29, 37, 41, 53, 59, 67, 71, 97, 101, 127, 149, 179, 191, 223, 227, 251, 257, 269, 307 (OEIS: A028388)
Happy numbers that are prime.
7, 13, 19, 23, 31, 79, 97, 103, 109, 139, 167, 193, 239, 263, 293, 313, 331, 367, 379, 383, 397, 409, 487, 563, 617, 653, 673, 683, 709, 739, 761, 863, 881, 907, 937, 1009, 1033, 1039, 1093 (OEIS: A035497)
Primes p for which there are no solutions to Hk ≡ 0 (mod p) and Hk ≡ −ωp (mod p) for 1 ≤ k ≤ p−2, where Hk denotes the k-th harmonic number and ωp denotes the Wolstenholme quotient.[7]
5, 13, 17, 23, 41, 67, 73, 79, 107, 113, 139, 149, 157, 179, 191, 193, 223, 239, 241, 251, 263, 277, 281, 293, 307, 311, 317, 331, 337, 349 (OEIS: A092101)
Higgs primes for squares
Primes p for which p − 1 divides the square of the product of all earlier terms.
2, 3, 5, 7, 11, 13, 19, 23, 29, 31, 37, 43, 47, 53, 59, 61, 67, 71, 79, 101, 107, 127, 131, 139, 149, 151, 157, 173, 181, 191, 197, 199, 211, 223, 229, 263, 269, 277, 283, 311, 317, 331, 347, 349 (OEIS: A007459)
Primes that are a cototient more often than any integer below it except 1.
2, 23, 47, 59, 83, 89, 113, 167, 269, 389, 419, 509, 659, 839, 1049, 1259, 1889 (OEIS: A105440)
For n ≥ 2, write the prime factorization of n in base 10 and concatenate the factors; iterate until a prime is reached.
2, 3, 211, 5, 23, 7, 3331113965338635107, 311, 773, 11, 223, 13, 13367, 1129, 31636373, 17, 233, 19, 3318308475676071413, 37, 211, 23, 331319, 773, 3251, 13367, 227, 29, 547, 31, 241271, 311, 31397, 1129, 71129, 37, 373, 313, 3314192745739, 41, 379, 43, 22815088913, 3411949, 223, 47, 6161791591356884791277 (OEIS: A037274)
Odd primes p that divide the class number of the p-th cyclotomic field.
37, 59, 67, 101, 103, 131, 149, 157, 233, 257, 263, 271, 283, 293, 307, 311, 347, 353, 379, 389, 401, 409, 421, 433, 461, 463, 467, 491, 523, 541, 547, 557, 577, 587, 593, 607, 613 (OEIS: A000928)
(See Wolstenholme prime)
Primes p such that (p, p−5) is an irregular pair.[8]
Primes p such that (p, p − 9) is an irregular pair.[8]
Primes p such that neither p − 2 nor p + 2 is prime.
2, 23, 37, 47, 53, 67, 79, 83, 89, 97, 113, 127, 131, 157, 163, 167, 173, 211, 223, 233, 251, 257, 263, 277, 293, 307, 317, 331, 337, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 439, 443, 449, 457, 467, 479, 487, 491, 499, 503, 509, 541, 547, 557, 563, 577, 587, 593, 607, 613, 631, 647, 653, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 839, 853, 863, 877, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997 (OEIS: A007510)
Of the form xy + yx, with 1 < x < y.
17, 593, 32993, 2097593, 8589935681, 59604644783353249, 523347633027360537213687137, 43143988327398957279342419750374600193 (OEIS: A094133)
Primes p for which, in a given base b, gives a cyclic number. They are also called full reptend primes. Primes p for base 10:
7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179, 181, 193, 223, 229, 233, 257, 263, 269, 313, 337, 367, 379, 383, 389, 419, 433, 461, 487, 491, 499, 503, 509, 541, 571, 577, 593 (OEIS: A001913)
Primes in the Lucas number sequence L0 = 2, L1 = 1, Ln = Ln−1 + Ln−2.
2,[9] 3, 7, 11, 29, 47, 199, 521, 2207, 3571, 9349, 3010349, 54018521, 370248451, 6643838879, 119218851371, 5600748293801, 688846502588399, 32361122672259149 (OEIS: A005479)
Lucky numbers that are prime.
3, 7, 13, 31, 37, 43, 67, 73, 79, 127, 151, 163, 193, 211, 223, 241, 283, 307, 331, 349, 367, 409, 421, 433, 463, 487, 541, 577, 601, 613, 619, 631, 643, 673, 727, 739, 769, 787, 823, 883, 937, 991, 997 (OEIS: A031157)
Of the form 2n − 1.
3, 7, 31, 127, 8191, 131071, 524287, 2147483647, 2305843009213693951, 618970019642690137449562111, 162259276829213363391578010288127, 170141183460469231731687303715884105727 (OEIS: A000668)
As of 2024, there are 52 known Mersenne primes. The 13th, 14th, and 52nd have respectively 157, 183, and 41,024,320 digits. This includes the largest known prime 2136,279,841-1, which is the 52nd Mersenne prime.
Mersenne divisors
Primes p that divide 2n − 1, for some prime number n.
3, 7, 23, 31, 47, 89, 127, 167, 223, 233, 263, 359, 383, 431, 439, 479, 503, 719, 839, 863, 887, 983, 1103, 1319, 1367, 1399, 1433, 1439, 1487, 1823, 1913, 2039, 2063, 2089, 2207, 2351, 2383, 2447, 2687, 2767, 2879, 2903, 2999, 3023, 3119, 3167, 3343 (OEIS: A122094)
All Mersenne primes are, by definition, members of this sequence.
Mersenne prime exponents
Primes p such that 2p − 1 is prime.
2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609, 57885161 (OEIS: A000043)
As of October 2024, four more are known to be in the sequence, but it is not known whether they are the next:
74207281, 77232917, 82589933, 136279841
A subset of Mersenne primes of the form 22p−1 − 1 for prime p.
7, 127, 2147483647, 170141183460469231731687303715884105727 (primes in OEIS: A077586)
Generalized repunit primes
Of the form (an − 1) / (a − 1) for fixed integer a.
For a = 2, these are the Mersenne primes, while for a = 10 they are the repunit primes. For other small a, they are given below:
a = 3: 13, 1093, 797161, 3754733257489862401973357979128773, 6957596529882152968992225251835887181478451547013 (OEIS: A076481)
a = 4: 5 (the only prime for a = 4)
a = 5: 31, 19531, 12207031, 305175781, 177635683940025046467781066894531, 14693679385278593849609206715278070972733319459651094018859396328480215743184089660644531 (OEIS: A086122)
a = 6: 7, 43, 55987, 7369130657357778596659, 3546245297457217493590449191748546458005595187661976371 (OEIS: A165210)
a = 7: 2801, 16148168401, 85053461164796801949539541639542805770666392330682673302530819774105141531698707146930307290253537320447270457
a = 8: 73 (the only prime for a = 8)
a = 9: none exist
Other generalizations and variations
Many generalizations of Mersenne primes have been defined. This include the following:
- Primes of the form bn − (b − 1)n,[10][11][12] including the Mersenne primes and the cuban primes as special cases
- Williams primes, of the form (b − 1)·bn − 1
Of the form ⌊θ3n⌋, where θ is Mills' constant. This form is prime for all positive integers n.
2, 11, 1361, 2521008887, 16022236204009818131831320183 (OEIS: A051254)
Primes for which there is no shorter sub-sequence of the decimal digits that form a prime. There are exactly 26 minimal primes:
2, 3, 5, 7, 11, 19, 41, 61, 89, 409, 449, 499, 881, 991, 6469, 6949, 9001, 9049, 9649, 9949, 60649, 666649, 946669, 60000049, 66000049, 66600049 (OEIS: A071062)
Newman–Shanks–Williams numbers that are prime.
7, 41, 239, 9369319, 63018038201, 489133282872437279, 19175002942688032928599 (OEIS: A088165)
Non-generous primes
Primes p for which the least positive primitive root is not a primitive root of p2. Three such primes are known; it is not known whether there are more.[13]
2, 40487, 6692367337 (OEIS: A055578)
Primes that remain the same when their decimal digits are read backwards.
2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, 10301, 10501, 10601, 11311, 11411, 12421, 12721, 12821, 13331, 13831, 13931, 14341, 14741 (OEIS: A002385)
Palindromic wing primes
Primes of the form with .[14] This means all digits except the middle digit are equal.
101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, 11311, 11411, 33533, 77377, 77477, 77977, 1114111, 1117111, 3331333, 3337333, 7772777, 7774777, 7778777, 111181111, 111191111, 777767777, 77777677777, 99999199999 (OEIS: A077798)
Partition function values that are prime.
2, 3, 5, 7, 11, 101, 17977, 10619863, 6620830889, 80630964769, 228204732751, 1171432692373, 1398341745571, 10963707205259, 15285151248481, 10657331232548839, 790738119649411319, 18987964267331664557 (OEIS: A049575)
Primes in the Pell number sequence P0 = 0, P1 = 1, Pn = 2Pn−1 + Pn−2.
2, 5, 29, 5741, 33461, 44560482149, 1746860020068409, 68480406462161287469, 13558774610046711780701, 4125636888562548868221559797461449 (OEIS: A086383)
Any permutation of the decimal digits is a prime.
2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, 97, 113, 131, 199, 311, 337, 373, 733, 919, 991, 1111111111111111111, 11111111111111111111111 (OEIS: A003459)
Primes in the Perrin number sequence P(0) = 3, P(1) = 0, P(2) = 2, P(n) = P(n−2) + P(n−3).
2, 3, 5, 7, 17, 29, 277, 367, 853, 14197, 43721, 1442968193, 792606555396977, 187278659180417234321, 66241160488780141071579864797 (OEIS: A074788)
Of the form 2u3v + 1 for some integers u,v ≥ 0.
These are also class 1- primes.
2, 3, 5, 7, 13, 17, 19, 37, 73, 97, 109, 163, 193, 257, 433, 487, 577, 769, 1153, 1297, 1459, 2593, 2917, 3457, 3889, 10369, 12289, 17497, 18433, 39367, 52489, 65537, 139969, 147457 (OEIS: A005109)
Primes p for which there exist n > 0 such that p divides n! + 1 and n does not divide p − 1.
23, 29, 59, 61, 67, 71, 79, 83, 109, 137, 139, 149, 193, 227, 233, 239, 251, 257, 269, 271, 277, 293, 307, 311, 317, 359, 379, 383, 389, 397, 401, 419, 431, 449, 461, 463, 467, 479, 499 (OEIS: A063980)
Primes of the form n4 + 1
2, 17, 257, 1297, 65537, 160001, 331777, 614657, 1336337, 4477457, 5308417, 8503057, 9834497, 29986577, 40960001, 45212177, 59969537, 65610001, 126247697, 193877777, 303595777, 384160001, 406586897, 562448657, 655360001 (OEIS: A037896)
Primes for which there are more prime permutations of some or all the decimal digits than for any smaller number.
2, 13, 37, 107, 113, 137, 1013, 1237, 1367, 10079 (OEIS: A119535)
Of the form pn# ± 1.
3, 5, 7, 29, 31, 211, 2309, 2311, 30029, 200560490131, 304250263527209, 23768741896345550770650537601358309 (union of OEIS: A057705 and OEIS: A018239[5])
Of the form k×2n + 1, with odd k and k < 2n.
3, 5, 13, 17, 41, 97, 113, 193, 241, 257, 353, 449, 577, 641, 673, 769, 929, 1153, 1217, 1409, 1601, 2113, 2689, 2753, 3137, 3329, 3457, 4481, 4993, 6529, 7297, 7681, 7937, 9473, 9601, 9857 (OEIS: A080076)
Of the form 4n + 1.
5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 149, 157, 173, 181, 193, 197, 229, 233, 241, 257, 269, 277, 281, 293, 313, 317, 337, 349, 353, 373, 389, 397, 401, 409, 421, 433, 449 (OEIS: A002144)
Where (p, p+2, p+6, p+8) are all prime.
(5, 7, 11, 13), (11, 13, 17, 19), (101, 103, 107, 109), (191, 193, 197, 199), (821, 823, 827, 829), (1481, 1483, 1487, 1489), (1871, 1873, 1877, 1879), (2081, 2083, 2087, 2089), (3251, 3253, 3257, 3259), (3461, 3463, 3467, 3469), (5651, 5653, 5657, 5659), (9431, 9433, 9437, 9439) (OEIS: A007530, OEIS: A136720, OEIS: A136721, OEIS: A090258)
Of the form x4 + y4, where x,y > 0.
2, 17, 97, 257, 337, 641, 881 (OEIS: A002645)
Integers Rn that are the smallest to give at least n primes from x/2 to x for all x ≥ Rn (all such integers are primes).
2, 11, 17, 29, 41, 47, 59, 67, 71, 97, 101, 107, 127, 149, 151, 167, 179, 181, 227, 229, 233, 239, 241, 263, 269, 281, 307, 311, 347, 349, 367, 373, 401, 409, 419, 431, 433, 439, 461, 487, 491 (OEIS: A104272)
Primes p that do not divide the class number of the p-th cyclotomic field.
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 43, 47, 53, 61, 71, 73, 79, 83, 89, 97, 107, 109, 113, 127, 137, 139, 151, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 239, 241, 251, 269, 277, 281 (OEIS: A007703)
Primes containing only the decimal digit 1.
11, 1111111111111111111 (19 digits), 11111111111111111111111 (23 digits) (OEIS: A004022)
The next have 317, 1031, 49081, 86453, 109297, 270343 digits (OEIS: A004023)
Of the form an + d for fixed integers a and d. Also called primes congruent to d modulo a.
The primes of the form 2n+1 are the odd primes, including all primes other than 2. Some sequences have alternate names: 4n+1 are Pythagorean primes, 4n+3 are the integer Gaussian primes, and 6n+5 are the Eisenstein primes (with 2 omitted). The classes 10n+d (d = 1, 3, 7, 9) are primes ending in the decimal digit d.
2n+1: 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53 (OEIS: A065091)
4n+1: 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137 (OEIS: A002144)
4n+3: 3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83, 103, 107 (OEIS: A002145)
6n+1: 7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103, 109, 127, 139 (OEIS: A002476)
6n+5: 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113 (OEIS: A007528)
8n+1: 17, 41, 73, 89, 97, 113, 137, 193, 233, 241, 257, 281, 313, 337, 353 (OEIS: A007519)
8n+3: 3, 11, 19, 43, 59, 67, 83, 107, 131, 139, 163, 179, 211, 227, 251 (OEIS: A007520)
8n+5: 5, 13, 29, 37, 53, 61, 101, 109, 149, 157, 173, 181, 197, 229, 269 (OEIS: A007521)
8n+7: 7, 23, 31, 47, 71, 79, 103, 127, 151, 167, 191, 199, 223, 239, 263 (OEIS: A007522)
10n+1: 11, 31, 41, 61, 71, 101, 131, 151, 181, 191, 211, 241, 251, 271, 281 (OEIS: A030430)
10n+3: 3, 13, 23, 43, 53, 73, 83, 103, 113, 163, 173, 193, 223, 233, 263 (OEIS: A030431)
10n+7: 7, 17, 37, 47, 67, 97, 107, 127, 137, 157, 167, 197, 227, 257, 277 (OEIS: A030432)
10n+9: 19, 29, 59, 79, 89, 109, 139, 149, 179, 199, 229, 239, 269, 349, 359 (OEIS: A030433)
12n+1: 13, 37, 61, 73, 97, 109, 157, 181, 193, 229, 241, 277, 313, 337, 349 (OEIS: A068228)
12n+5: 5, 17, 29, 41, 53, 89, 101, 113, 137, 149, 173, 197, 233, 257, 269 (OEIS: A040117)
12n+7: 7, 19, 31, 43, 67, 79, 103, 127, 139, 151, 163, 199, 211, 223, 271 (OEIS: A068229)
12n+11: 11, 23, 47, 59, 71, 83, 107, 131, 167, 179, 191, 227, 239, 251, 263 (OEIS: A068231)
Where p and (p−1) / 2 are both prime.
5, 7, 11, 23, 47, 59, 83, 107, 167, 179, 227, 263, 347, 359, 383, 467, 479, 503, 563, 587, 719, 839, 863, 887, 983, 1019, 1187, 1283, 1307, 1319, 1367, 1439, 1487, 1523, 1619, 1823, 1907 (OEIS: A005385)
Self primes in base 10
Primes that cannot be generated by any integer added to the sum of its decimal digits.
3, 5, 7, 31, 53, 97, 211, 233, 277, 367, 389, 457, 479, 547, 569, 613, 659, 727, 839, 883, 929, 1021, 1087, 1109, 1223, 1289, 1447, 1559, 1627, 1693, 1783, 1873 (OEIS: A006378)
Where (p, p + 6) are both prime.
(5, 11), (7, 13), (11, 17), (13, 19), (17, 23), (23, 29), (31, 37), (37, 43), (41, 47), (47, 53), (53, 59), (61, 67), (67, 73), (73, 79), (83, 89), (97, 103), (101, 107), (103, 109), (107, 113), (131, 137), (151, 157), (157, 163), (167, 173), (173, 179), (191, 197), (193, 199) (OEIS: A023201, OEIS: A046117)
Primes that are the concatenation of the first n primes written in decimal.
The fourth Smarandache-Wellin prime is the 355-digit concatenation of the first 128 primes that end with 719.
Of the form 2a ± 2b ± 1, where 0 < b < a.
3, 5, 7, 11, 13 (OEIS: A165255)
Where p and 2p + 1 are both prime. A Sophie Germain prime has a corresponding safe prime.
2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131, 173, 179, 191, 233, 239, 251, 281, 293, 359, 419, 431, 443, 491, 509, 593, 641, 653, 659, 683, 719, 743, 761, 809, 911, 953 (OEIS: A005384)
Primes that are not the sum of a smaller prime and twice the square of a nonzero integer.
2, 3, 17, 137, 227, 977, 1187, 1493 (OEIS: A042978)
As of 2011, these are the only known Stern primes, and possibly the only existing.
Primes with prime-numbered indexes in the sequence of prime numbers (the 2nd, 3rd, 5th, ... prime).
3, 5, 11, 17, 31, 41, 59, 67, 83, 109, 127, 157, 179, 191, 211, 241, 277, 283, 331, 353, 367, 401, 431, 461, 509, 547, 563, 587, 599, 617, 709, 739, 773, 797, 859, 877, 919, 967, 991 (OEIS: A006450)
There are exactly fifteen supersingular primes:
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71 (OEIS: A002267)
Of the form 3×2n − 1.
2, 5, 11, 23, 47, 191, 383, 6143, 786431, 51539607551, 824633720831, 26388279066623, 108086391056891903, 55340232221128654847, 226673591177742970257407 (OEIS: A007505)
The primes of the form 3×2n + 1 are related.
7, 13, 97, 193, 769, 12289, 786433, 3221225473, 206158430209, 6597069766657 (OEIS: A039687)
Where (p, p+2, p+6) or (p, p+4, p+6) are all prime.
(5, 7, 11), (7, 11, 13), (11, 13, 17), (13, 17, 19), (17, 19, 23), (37, 41, 43), (41, 43, 47), (67, 71, 73), (97, 101, 103), (101, 103, 107), (103, 107, 109), (107, 109, 113), (191, 193, 197), (193, 197, 199), (223, 227, 229), (227, 229, 233), (277, 281, 283), (307, 311, 313), (311, 313, 317), (347, 349, 353) (OEIS: A007529, OEIS: A098414, OEIS: A098415)
Left-truncatable
Primes that remain prime when the leading decimal digit is successively removed.
2, 3, 5, 7, 13, 17, 23, 37, 43, 47, 53, 67, 73, 83, 97, 113, 137, 167, 173, 197, 223, 283, 313, 317, 337, 347, 353, 367, 373, 383, 397, 443, 467, 523, 547, 613, 617, 643, 647, 653, 673, 683 (OEIS: A024785)
Right-truncatable
Primes that remain prime when the least significant decimal digit is successively removed.
2, 3, 5, 7, 23, 29, 31, 37, 53, 59, 71, 73, 79, 233, 239, 293, 311, 313, 317, 373, 379, 593, 599, 719, 733, 739, 797, 2333, 2339, 2393, 2399, 2939, 3119, 3137, 3733, 3739, 3793, 3797 (OEIS: A024770)
Two-sided
Primes that are both left-truncatable and right-truncatable. There are exactly fifteen two-sided primes:
2, 3, 5, 7, 23, 37, 53, 73, 313, 317, 373, 797, 3137, 3797, 739397 (OEIS: A020994)
Where (p, p+2) are both prime.
(3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), (59, 61), (71, 73), (101, 103), (107, 109), (137, 139), (149, 151), (179, 181), (191, 193), (197, 199), (227, 229), (239, 241), (269, 271), (281, 283), (311, 313), (347, 349), (419, 421), (431, 433), (461, 463) (OEIS: A001359, OEIS: A006512)
The list of primes p for which the period length of the decimal expansion of 1/p is unique (no other prime gives the same period).
3, 11, 37, 101, 9091, 9901, 333667, 909091, 99990001, 999999000001, 9999999900000001, 909090909090909091, 1111111111111111111, 11111111111111111111111, 900900900900990990990991 (OEIS: A040017)
Of the form (2n + 1) / 3.
3, 11, 43, 683, 2731, 43691, 174763, 2796203, 715827883, 2932031007403, 768614336404564651, 201487636602438195784363, 845100400152152934331135470251, 56713727820156410577229101238628035243 (OEIS: A000979)
Values of n:
3, 5, 7, 11, 13, 17, 19, 23, 31, 43, 61, 79, 101, 127, 167, 191, 199, 313, 347, 701, 1709, 2617, 3539, 5807, 10501, 10691, 11279, 12391, 14479, 42737, 83339, 95369, 117239, 127031, 138937, 141079, 267017, 269987, 374321 (OEIS: A000978)
A prime p > 5, if p2 divides the Fibonacci number , where the Legendre symbol is defined as
As of 2018, no Wall-Sun-Sun primes are known.
Primes p such that ap − 1 ≡ 1 (mod p2) for fixed integer a > 1.
2p − 1 ≡ 1 (mod p2): 1093, 3511 (OEIS: A001220)
3p − 1 ≡ 1 (mod p2): 11, 1006003 (OEIS: A014127)[17][18][19]
4p − 1 ≡ 1 (mod p2): 1093, 3511
5p − 1 ≡ 1 (mod p2): 2, 20771, 40487, 53471161, 1645333507, 6692367337, 188748146801 (OEIS: A123692)
6p − 1 ≡ 1 (mod p2): 66161, 534851, 3152573 (OEIS: A212583)
7p − 1 ≡ 1 (mod p2): 5, 491531 (OEIS: A123693)
8p − 1 ≡ 1 (mod p2): 3, 1093, 3511
9p − 1 ≡ 1 (mod p2): 2, 11, 1006003
10p − 1 ≡ 1 (mod p2): 3, 487, 56598313 (OEIS: A045616)
11p − 1 ≡ 1 (mod p2): 71[20]
12p − 1 ≡ 1 (mod p2): 2693, 123653 (OEIS: A111027)
13p − 1 ≡ 1 (mod p2): 2, 863, 1747591 (OEIS: A128667)[20]
14p − 1 ≡ 1 (mod p2): 29, 353, 7596952219 (OEIS: A234810)
15p − 1 ≡ 1 (mod p2): 29131, 119327070011 (OEIS: A242741)
16p − 1 ≡ 1 (mod p2): 1093, 3511
17p − 1 ≡ 1 (mod p2): 2, 3, 46021, 48947 (OEIS: A128668)[20]
18p − 1 ≡ 1 (mod p2): 5, 7, 37, 331, 33923, 1284043 (OEIS: A244260)
19p − 1 ≡ 1 (mod p2): 3, 7, 13, 43, 137, 63061489 (OEIS: A090968)[20]
20p − 1 ≡ 1 (mod p2): 281, 46457, 9377747, 122959073 (OEIS: A242982)
21p − 1 ≡ 1 (mod p2): 2
22p − 1 ≡ 1 (mod p2): 13, 673, 1595813, 492366587, 9809862296159 (OEIS: A298951)
23p − 1 ≡ 1 (mod p2): 13, 2481757, 13703077, 15546404183, 2549536629329 (OEIS: A128669)
24p − 1 ≡ 1 (mod p2): 5, 25633
25p − 1 ≡ 1 (mod p2): 2, 20771, 40487, 53471161, 1645333507, 6692367337, 188748146801
As of 2018, these are all known Wieferich primes with a ≤ 25.
Primes p for which p2 divides (p−1)! + 1.
As of 2018, these are the only known Wilson primes.
Primes p for which the binomial coefficient
16843, 2124679 (OEIS: A088164)
As of 2018, these are the only known Wolstenholme primes.
Of the form n×2n − 1.
7, 23, 383, 32212254719, 2833419889721787128217599, 195845982777569926302400511, 4776913109852041418248056622882488319 (OEIS: A050918)
See also
- Illegal prime – Number representing illegal information
- Largest known prime number
- List of largest known primes and probable primes
- List of numbers – Notable numbers
- Prime gap – Difference between two successive prime numbers
- Prime number theorem – Characterization of how many integers are prime
- Probable prime – Integers that satisfy a specific condition
- Pseudoprime – Probable prime that is composite
- Strong prime
- Table of prime factors
- Wieferich pair
References
- ^ Lehmer, D. N. (1982). List of prime numbers from 1 to 10,006,721. Vol. 165. Washington D.C.: Carnegie Institution of Washington. OL 16553580M. OL16553580M.
- ^ Tomás Oliveira e Silva, Goldbach conjecture verification Archived 24 May 2011 at the Wayback Machine. Retrieved 16 July 2013
- ^ (sequence A080127 in the OEIS)
- ^ Jens Franke (29 July 2010). "Conditional Calculation of pi(1024)". Archived from the original on 24 August 2014. Retrieved 17 May 2011.
- ^ a b OEIS: A018239 includes 2 = empty product of first 0 primes plus 1, but 2 is excluded in this list.
- ^ Boklan, Kent D.; Conway, John H. (2016). "Expect at most one billionth of a new Fermat Prime!". arXiv:1605.01371 [math.NT].
- ^ Boyd, D. W. (1994). "A p-adic Study of the Partial Sums of the Harmonic Series". Experimental Mathematics. 3 (4): 287–302. doi:10.1080/10586458.1994.10504298. Zbl 0838.11015. CiteSeerX: 10.1.1.56.7026. Archived from the original on 27 January 2016.
- ^ a b Johnson, W. (1975). "Irregular Primes and Cyclotomic Invariants". Mathematics of Computation. 29 (129). AMS: 113–120. doi:10.2307/2005468. JSTOR 2005468.
- ^ It varies whether L0 = 2 is included in the Lucas numbers.
- ^ Sloane, N. J. A. (ed.). "Sequence A121091 (Smallest nexus prime of the form n^p - (n-1)^p, where p is an odd prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A121616 (Primes of form (n+1)^5 - n^5)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A121618 (Nexus primes of order 7 or primes of form n^7 - (n-1)^7)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Paszkiewicz, Andrzej (2009). "A new prime for which the least primitive root and the least primitive root are not equal" (PDF). Math. Comp. 78 (266). American Mathematical Society: 1193–1195. Bibcode:2009MaCom..78.1193P. doi:10.1090/S0025-5718-08-02090-5.
- ^ Caldwell, C.; Dubner, H. (1996–97). "The near repdigit primes , especially ". Journal of Recreational Mathematics. 28 (1): 1–9.
- ^ Lal, M. (1967). "Primes of the Form n4 + 1" (PDF). Mathematics of Computation. 21. AMS: 245–247. doi:10.1090/S0025-5718-1967-0222007-9. ISSN 1088-6842. Archived (PDF) from the original on 13 January 2015.
- ^ Bohman, J. (1973). "New primes of the form n4 + 1". BIT Numerical Mathematics. 13 (3). Springer: 370–372. doi:10.1007/BF01951947. ISSN 1572-9125. S2CID 123070671.
- ^ Ribenboim, P. (22 February 1996). The new book of prime number records. New York: Springer-Verlag. p. 347. ISBN 0-387-94457-5.
- ^ "Mirimanoff's Congruence: Other Congruences". Retrieved 26 January 2011.
- ^ Gallot, Y.; Moree, P.; Zudilin, W. (2011). "The Erdös-Moser equation 1k + 2k +...+ (m−1)k = mk revisited using continued fractions". Mathematics of Computation. 80. American Mathematical Society: 1221–1237. arXiv:0907.1356. doi:10.1090/S0025-5718-2010-02439-1. S2CID 16305654.
- ^ a b c d Ribenboim, P. (2006). Die Welt der Primzahlen (PDF). Berlin: Springer. p. 240. ISBN 3-540-34283-4.
External links
- [1] All prime numbers from 31 to 6,469,693,189 for free download.
- Lists of Primes at the Prime Pages.
- The Nth Prime Page Nth prime through n=10^12, pi(x) through x=3*10^13, Random primes in same range.
- Interface to a list of the first 98 million primes (primes less than 2,000,000,000)
- Weisstein, Eric W. "Prime Number Sequences". MathWorld.
- Selected prime related sequences in OEIS.
- Fischer, R. Thema: Fermatquotient B^(P−1) == 1 (mod P^2) (in German) (Lists Wieferich primes in all bases up to 1052)
- Padilla, Tony (7 February 2013). "New Largest Known Prime Number". Numberphile. Brady Haran. Archived from the original on 2 November 2021.