May 2002 lunar eclipse
Penumbral eclipse | |||||||||
Date | May 26, 2002 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Gamma | 1.1758 | ||||||||
Magnitude | −0.2871 | ||||||||
Saros cycle | 111 (66 of 71) | ||||||||
Penumbral | 216 minutes, 34 seconds | ||||||||
| |||||||||
A penumbral lunar eclipse occurred at the Moon’s descending node of orbit on Sunday, May 26, 2002,[1] with an umbral magnitude of −0.2871. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A penumbral lunar eclipse occurs when part or all of the Moon's near side passes into the Earth's penumbra. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. Occurring about 3.1 days after perigee (on May 23, 2002, at 11:30 UTC), the Moon's apparent diameter was larger.[2]
Visibility
The eclipse was completely visible over Australia, the Pacific Ocean, and Antarctica, seen rising over much of Asia and setting over much of North America and western South America.[3]
The moon's hourly motion across the Earth's shadow in the constellation of Scorpius. |
In popular culture
This eclipse appears in the 2022 film Turning Red, although it differs from actual events. It is depicted as taking place on the evening of 25 May, rather than the early morning hours of 26 May. Additionally, the film takes place in Toronto, where the total eclipse was not visible.
Eclipse details
Shown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.[4]
Parameter | Value |
---|---|
Penumbral Magnitude | 0.69104 |
Umbral Magnitude | −0.28705 |
Gamma | 1.17591 |
Sun Right Ascension | 04h12m31.0s |
Sun Declination | +21°08'37.3" |
Sun Semi-Diameter | 15'47.3" |
Sun Equatorial Horizontal Parallax | 08.7" |
Moon Right Ascension | 16h13m52.1s |
Moon Declination | -20°01'35.7" |
Moon Semi-Diameter | 16'08.5" |
Moon Equatorial Horizontal Parallax | 0°59'14.5" |
ΔT | 64.3 s |
Eclipse season
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.
May 26 Descending node (full moon) |
June 10 Ascending node (new moon) |
June 24 Descending node (full moon) |
---|---|---|
Penumbral lunar eclipse Lunar Saros 111 |
Annular solar eclipse Solar Saros 137 |
Penumbral lunar eclipse Lunar Saros 149 |
Related eclipses
Eclipses in 2002
- A penumbral lunar eclipse on May 26.
- An annular solar eclipse on June 10.
- A penumbral lunar eclipse on June 24.
- A penumbral lunar eclipse on November 20.
- A total solar eclipse on December 4.
Metonic
- Preceded by: Lunar eclipse of August 8, 1998
- Followed by: Lunar eclipse of March 14, 2006
Tzolkinex
- Preceded by: Lunar eclipse of April 15, 1995
- Followed by: Lunar eclipse of July 7, 2009
Half-Saros
- Preceded by: Solar eclipse of May 21, 1993
- Followed by: Solar eclipse of June 1, 2011
Tritos
- Preceded by: Lunar eclipse of June 27, 1991
- Followed by: Lunar eclipse of April 25, 2013
Lunar Saros 111
- Preceded by: Lunar eclipse of May 15, 1984
- Followed by: Lunar eclipse of June 5, 2020
Inex
- Preceded by: Lunar eclipse of June 15, 1973
- Followed by: Lunar eclipse of May 7, 2031
Triad
- Preceded by: Lunar eclipse of July 26, 1915
- Followed by: Lunar eclipse of March 26, 2089
Lunar eclipses of 2002–2005
This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[5]
The penumbral lunar eclipse on June 24, 2002 occurs in the previous lunar year eclipse set.
Lunar eclipse series sets from 2002 to 2005 | ||||||||
---|---|---|---|---|---|---|---|---|
Descending node | Ascending node | |||||||
Saros | Date Viewing |
Type Chart |
Gamma | Saros | Date Viewing |
Type Chart |
Gamma | |
111 | 2002 May 26 |
Penumbral |
1.1759 | 116 | 2002 Nov 20 |
Penumbral |
−1.1127 | |
121 |
2003 May 16 |
Total |
0.4123 | 126 |
2003 Nov 09 |
Total |
−0.4319 | |
131 |
2004 May 04 |
Total |
−0.3132 | 136 |
2004 Oct 28 |
Total |
0.2846 | |
141 | 2005 Apr 24 |
Penumbral |
−1.0885 | 146 |
2005 Oct 17 |
Partial |
0.9796 |
Saros 111
This eclipse is a part of Saros series 111, repeating every 18 years, 11 days, and containing 71 events. The series started with a penumbral lunar eclipse on June 10, 830 AD. It contains partial eclipses from September 14, 992 AD through April 8, 1335; total eclipses from April 19, 1353 through August 4, 1533; and a second set of partial eclipses from August 16, 1551 through April 23, 1948. The series ends at member 71 as a penumbral eclipse on July 19, 2092.
The longest duration of totality was produced by member 35 at 106 minutes, 14 seconds on June 12, 1443. All eclipses in this series occur at the Moon’s descending node of orbit.[6]
Greatest | First | |||
---|---|---|---|---|
The greatest eclipse of the series occurred on 1443 Jun 12, lasting 106 minutes, 14 seconds.[7] | Penumbral | Partial | Total | Central |
830 Jun 10 |
992 Sep 14 |
1353 Apr 19 |
1389 May 10 | |
Last | ||||
Central | Total | Partial | Penumbral | |
1497 Jul 14 |
1533 Aug 04 |
1948 Apr 23 |
2092 Jul 19 |
Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
Series members 55–71 occur between 1801 and 2092: | |||||
---|---|---|---|---|---|
55 | 56 | 57 | |||
1804 Jan 26 | 1822 Feb 06 | 1840 Feb 17 | |||
58 | 59 | 60 | |||
1858 Feb 27 | 1876 Mar 10 | 1894 Mar 21 | |||
61 | 62 | 63 | |||
1912 Apr 01 | 1930 Apr 13 | 1948 Apr 23 | |||
64 | 65 | 66 | |||
1966 May 04 | 1984 May 15 | 2002 May 26 | |||
67 | 68 | 69 | |||
2020 Jun 05 | 2038 Jun 17 | 2056 Jun 27 | |||
70 | 71 | ||||
2074 Jul 08 | 2092 Jul 19 | ||||
Metonic series
First eclipse: May 26, 2002. Second eclipse: 26 May 2021. Third eclipse: 26 May 2040. Fourth eclipse: 27 May 2059.
Half-Saros cycle
A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[8] This lunar eclipse is related to two partial solar eclipses of Solar Saros 118.
May 21, 1993 | June 1, 2011 |
---|---|
See also
References
- ^ "May 26, 2002 Penumbral Lunar Eclipse". timeanddate. Retrieved 12 November 2024.
- ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 12 November 2024.
- ^ "Penumbral Lunar Eclipse of 2002 May 26" (PDF). NASA. Retrieved 12 November 2024.
- ^ "Penumbral Lunar Eclipse of 2002 May 26". EclipseWise.com. Retrieved 12 November 2024.
- ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
- ^ "NASA - Catalog of Lunar Eclipses of Saros 111". eclipse.gsfc.nasa.gov.
- ^ Listing of Eclipses of series 111
- ^ Mathematical Astronomy Morsels, Jean Meeus, p.110, Chapter 18, The half-saros
External links
- Saros cycle 111
- 2002 May 26 chart: Eclipse Predictions by Fred Espenak, NASA/GSFC
- http://www.eclipse.org.uk/eclipse/1132002/[permanent dead link ]