Potassium intermediate/small conductance calcium-activated channel, subfamily N, member 4, also known as KCNN4, is a human gene encoding the KCa3.1 protein.[5]
Function
The KCa3.1 protein is part of a potentially heterotetrameric voltage-independent potassium channel that is activated by intracellular calcium. Activation is followed by membrane hyperpolarization, which promotes calcium influx. The encoded protein may be part of the predominant calcium-activated potassium channel in T-lymphocytes. This gene is similar to other KCNN family potassium channel genes, but it differs enough to possibly be considered as part of a new subfamily.[5]
History
The channel activity was first described in 1958 by György Gárdos in human erythrocytes.[6] The channel is also named Gardos channel because of its discoverer.
^Gardos G (1958). "The function of calcium in the potassium permeability of human erythrocytes". Biochim. Biophys. Acta. 30 (3): 653–4. doi:10.1016/0006-3002(58)90124-0. PMID13618284.
Further reading
Wei AD, Gutman GA, Aldrich R, Chandy KG, Grissmer S, Wulff H (2005). "International Union of Pharmacology. LII. Nomenclature and molecular relationships of calcium-activated potassium channels". Pharmacol. Rev. 57 (4): 463–72. doi:10.1124/pr.57.4.9. PMID16382103. S2CID8290401.
Mazzone JN, Kaiser RA, Buxton IL (2002). "Calcium-activated potassium channel expression in human myometrium: effect of pregnancy". Proc. West. Pharmacol. Soc. 45: 184–6. PMID12434576.
Bernard K, Bogliolo S, Soriani O, Ehrenfeld J (2003). "Modulation of calcium-dependent chloride secretion by basolateral SK4-like channels in a human bronchial cell line". J. Membr. Biol. 196 (1): 15–31. doi:10.1007/s00232-003-0621-3. PMID14724753. S2CID20530729.
Gibson JS, Muzyamba MC (2004). "Modulation of Gardos channel activity by oxidants and oxygen tension: effects of 1-chloro-2,4-dinitrobenzene and phenazine methosulphate". Bioelectrochemistry. 62 (2): 147–52. doi:10.1016/j.bioelechem.2003.07.008. PMID15039018.