Langbahn Team – Weltmeisterschaft

Histamine H2 receptor

HRH2
Identifiers
AliasesHRH2, H2R, histamine receptor H2, HH2R
External IDsOMIM: 142703; MGI: 108482; HomoloGene: 40613; GeneCards: HRH2; OMA:HRH2 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001131055
NM_022304
NM_001367711
NM_001393460
NM_001393461

NM_001010973
NM_008286

RefSeq (protein)

NP_001124527
NP_001354640

NP_001010973

Location (UCSC)Chr 5: 175.66 – 175.71 MbChr 13: 54.35 – 54.39 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

H2 receptors are a type of histamine receptor found in many parts of the anatomy of humans and other animals. They are positively coupled to adenylate cyclase via Gs alpha subunit. It is a potent stimulant of cAMP production, which leads to activation of protein kinase A.[5] PKA functions to phosphorylate certain proteins, affecting their activity. The drug betazole is an example of a histamine H2 receptor agonist.

Function

Histamine is a ubiquitous messenger molecule released from mast cells, enterochromaffin-like cells, and neurons.[5] Its various actions are mediated by histamine receptors H1, H2, H3 and H4. The histamine receptor H2 belongs to the rhodopsin-like family of G protein-coupled receptors. It is an integral membrane protein and stimulates gastric acid secretion. It also regulates gastrointestinal motility and intestinal secretion and is thought to be involved in regulating cell growth and differentiation.[6] Histamine may play a role in penile erection.[7]

Tissue distribution

Histamine H2 receptors are expressed in the following tissues:

Peripheral tissues[5][8]


Central nervous system tissues[8]

Physiological responses

Activation of the H2 receptor results in the following physiological responses:

  • Stimulation of gastric acid secretion (Target of anti-histaminergics (H2 receptors) for peptic ulcer disease and GERD)
  • Smooth muscle relaxation (Experimental histamine H2 receptor agonist used for asthma and COPD)
  • Inhibit antibody synthesis, T-cell proliferation and cytokine production
  • VasodilationPKA activity causes phosphorylation of MLCK, decreasing its activity, resulting in MLC of myosin being dephosphorylated by MLCP and thus inhibiting contraction. The smooth muscle relaxation leads to vasodilation.[10]
  • Inhibition of neutrophil activation and chemotaxis[8]

See also

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000113749Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000034987Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ a b c Hill SJ, Ganellin CR, Timmerman H, Schwartz JC, Shankley NP, Young JM, et al. (Sep 1997). "International Union of Pharmacology. XIII. Classification of histamine receptors". Pharmacological Reviews. 49 (3): 253–78. PMID 9311023.
  6. ^ "Entrez Gene: HRH2 histamine receptor H2".
  7. ^ Cará AM, Lopes-Martins RA, Antunes E, Nahoum CR, De Nucci G (February 1995). "The role of histamine in human penile erection". British Journal of Urology. 75 (2): 220–224. doi:10.1111/j.1464-410x.1995.tb07315.x. PMID 7850330.
  8. ^ a b c Maguire JJ, Davenport AP (29 November 2016). "H2 receptor". IUPHAR/BPS Guide to PHARMACOLOGY. International Union of Basic and Clinical Pharmacology. Retrieved 20 March 2017.
  9. ^ Bertaccini G, Coruzzi G (1983). "Extragastric H2-receptors". Journal of Clinical Gastroenterology. 5 Suppl 1: 57–70. doi:10.1097/00004836-198312001-00006. PMID 6140284. S2CID 24764785.
  10. ^ Walter F., PhD. Boron (2005). Medical Physiology: A Cellular And Molecular Approaoch. Elsevier/Saunders. ISBN 1-4160-2328-3. Page 479

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.