Langbahn Team – Weltmeisterschaft

Gaussian measure

In mathematics, Gaussian measure is a Borel measure on finite-dimensional Euclidean space , closely related to the normal distribution in statistics. There is also a generalization to infinite-dimensional spaces. Gaussian measures are named after the German mathematician Carl Friedrich Gauss. One reason why Gaussian measures are so ubiquitous in probability theory is the central limit theorem. Loosely speaking, it states that if a random variable is obtained by summing a large number of independent random variables with variance 1, then has variance and its law is approximately Gaussian.

Definitions

Let and let denote the completion of the Borel -algebra on . Let denote the usual -dimensional Lebesgue measure. Then the standard Gaussian measure is defined by for any measurable set . In terms of the Radon–Nikodym derivative,

More generally, the Gaussian measure with mean and variance is given by

Gaussian measures with mean are known as centered Gaussian measures.

The Dirac measure is the weak limit of as , and is considered to be a degenerate Gaussian measure; in contrast, Gaussian measures with finite, non-zero variance are called non-degenerate Gaussian measures.

Properties

The standard Gaussian measure on

Infinite-dimensional spaces

It can be shown that there is no analogue of Lebesgue measure on an infinite-dimensional vector space. Even so, it is possible to define Gaussian measures on infinite-dimensional spaces, the main example being the abstract Wiener space construction. A Borel measure on a separable Banach space is said to be a non-degenerate (centered) Gaussian measure if, for every linear functional except , the push-forward measure is a non-degenerate (centered) Gaussian measure on in the sense defined above.

For example, classical Wiener measure on the space of continuous paths is a Gaussian measure.

See also

References

  • Bogachev, Vladimir (1998). Gaussian Measures. American Mathematical Society. ISBN 978-1470418694.
  • Stroock, Daniel (2010). "Gaussian Measures on a Banach Space". Probability Theory: An Analytic View. Cambridge University Press. pp. 264–303. doi:10.1017/9781009549035.010. ISBN 978-0521132503.