DescriptionThe most distant gravitational lens yet discovered.jpg
English: This picture from the NASA/ESA Hubble Space Telescope shows the most distant gravitational lens yet discovered. The glow at the centre of this picture is the central regions of a normal galaxy. By chance it is precisely aligned with a much more remote, young star-forming galaxy. The light from the more distant object is bent around the nearer object by its strong gravitational pull to form a ring of multiple images. The chance of finding such an exact alignment is very small, suggesting that there may be more star-forming galaxies in the early Universe than expected.
ESA/Hubble images, videos and web texts are released by the ESA under the Creative Commons Attribution 4.0 International license and may on a non-exclusive basis be reproduced without fee provided they are clearly and visibly credited. Detailed conditions are below; see the ESA copyright statement for full information. For images created by NASA or on the hubblesite.org website, or for ESA/Hubble images on the esahubble.org site before 2009, use the {{PD-Hubble}} tag.
Conditions:
The full image or footage credit must be presented in a clear and readable manner to all users, with the wording unaltered (for example: "ESA/Hubble"). Web texts should be credited to ESA/Hubble (except when used by media). The credit should not be hidden or disassociated from the image footage. Links should be active if the credit is online. See the usage rights Q&A section on the ESA copyright page for guidance.
ESA/Hubble materials may not be used to state or imply the endorsement by ESA/Hubble or any ESA/Hubble employee of a commercial product or service.
ESA/Hubble requests a copy of the product sent to them to be indexed in their archive.
If an image shows an identifiable person, using that image for commercial purposes may infringe that person's right of privacy, and separate permission should be obtained from the individual.
If images or visuals are changed significantly from the original work (apart from resizing, cropping), we suggest that the changes are mentioned after the credit line. For example "Original image by ESA/Hubble (M. Kornmesser), warping and recolouring by NN".
Notes:
Note that this general permission does not extend to the use of ESA/Hubble's logo, which shall remain protected and may not be used or reproduced without prior and individual written consent of ESA/Hubble.
Also note that music, scientific papers and code on the esahubble.org site are not released under this license and can not be used for non-ESA/Hubble products.
By reproducing ESA/Hubble material, in part or in full, the user acknowledges the terms on which such use is permitted.
to share – to copy, distribute and transmit the work
to remix – to adapt the work
Under the following conditions:
attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
https://creativecommons.org/licenses/by/4.0CC BY 4.0 Creative Commons Attribution 4.0 truetrue
Captions
Add a one-line explanation of what this file represents
Items portrayed in this file
depicts
copyright status
copyrighted
copyright license
Creative Commons Attribution 4.0 International
inception
17 October 2013
media type
image/jpeg
File history
Click on a date/time to view the file as it appeared at that time.
This file contains additional information, probably added from the digital camera or scanner used to create or digitize it.
If the file has been modified from its original state, some details may not fully reflect the modified file.
Image title
This picture from the NASA/ESA Hubble Space Telescope shows the most distant gravitational lens yet discovered. The glow at the centre of this picture is the central regions of a normal galaxy. By chance it is precisely aligned with a much more remote, young star-forming galaxy. The light from the more distant object is bent around the nearer object by its strong graviational pull to form a ring of multiple images. The chance of finding such an exact alignment is very small, suggesting that there may be more star-forming galaxies in the early Universe than expected.
Credit/Provider
NASA/ESA/A. van der Wel
Source
ESA/Hubble
Short title
The most distant gravitational lens yet discovered
Usage terms
Creative Commons Attribution 4.0 International License
Date and time of data generation
16:00, 17 October 2013
JPEG file comment
This picture from the NASA/ESA Hubble Space Telescope shows the most distant gravitational lens yet discovered. The glow at the centre of this picture is the central regions of a normal galaxy. By chance it is precisely aligned with a much more remote, young star-forming galaxy. The light from the more distant object is bent around the nearer object by its strong graviational pull to form a ring of multiple images. The chance of finding such an exact alignment is very small, suggesting that there may be more star-forming galaxies in the early Universe than expected.