Langbahn Team – Weltmeisterschaft

File:Ising-tartan.png

Original file (1,024 × 1,024 pixels, file size: 5 KB, MIME type: image/png)

Summary

Description
English: This tartan-like graph shows the Ising model probability density for the two-sided lattice using the dyadic mapping.

That is, a lattice configuration of length

is understood to consist of a sequence of "spins" . This sequence may be represented by two real numbers with

and

The energy of a given configuration is computed using the classical Hamiltonian,

Here, is the shift operator, acting on the lattice by shifting all spins over by one position:

The interaction potential is given by the Ising model interaction

Here, the constant is the interaction strength between two neighboring spins and , while the constant may be interpreted as the strength of the interaction between the magnetic field and the magnetic moment of the spin.

The set of all possible configurations form a canonical ensemble, with each different configuration occurring with a probability given by the Boltzmann distribution

where is Boltzmann's constant, is the temperature, and is the partition function. The partition function is defined to be such that the sum over all probabilities adds up to one; that is, so that

Image details

The image here shows for the Ising model, with , and temperature . The lattice is finite sized, with , so that all lattice configurations are represented, each configuration denoted by one pixel. The color choices here are such that black represents values where are zero, blue are small values, with yellow and red being progressively larger values.

As an invariant measure

This fractal tartan is invariant under the Baker's map. The shift operator on the lattice has an action on the unit square with the following representation:

This map (up to a reflection/rotation around the 45-degree axis) is essentially the Baker's map or equivalently the Horseshoe map. As the article on the Horseshoe map explains, the invariant sets have such a tartan pattern (an appropriately deformed Sierpinski carpet). In this case, the invariance arises from the translation invariance of the Gibbs states of the Ising model: that is, the energy associated with the state is invariant under the action of :

for all integers . Similarly, the probability density is invariant as well:

The naive classical treatment given here suffers from conceptual difficulties in the limit. These problems can be remedied by using a more appropriate topology on the set of states that make up the configuration space. This topology is the cylinder set topology, and using it allows one to construct a sigma algebra and thus a measure on the set of states. With this topology, the probability density can be understood to be a translation-invariant measure on the topology. Indeed, there is a certain sense in which the seemingly fractal patterns generated by the iterated Baker's map or horseshoe map can be understood with a conventional and well-behaved topology on a lattice model.

Created by Linas Vepstas User:Linas on 24 September 2006
Date 24 September 2006 (original upload date)
Source
Author Linas at English Wikipedia

Licensing

Linas at the English-language Wikipedia, the copyright holder of this work, hereby publishes it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license. Subject to disclaimers.
Attribution: Linas at the English-language Wikipedia
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
This licensing tag was added to this file as part of the GFDL licensing update.
GNU head Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License. Subject to disclaimers.

Original upload log

Transferred from en.wikipedia to Commons by Liftarn using CommonsHelper.

The original description page was here. All following user names refer to en.wikipedia.
  • 2006-09-24 16:14 Linas 1024×1024× (5013 bytes) Created by Linas Vepstas [[User:Linas]] on 24 September 2006

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

copyright status

copyrighted

copyright license

GNU Free Documentation License, version 1.2 or later

Creative Commons Attribution-ShareAlike 3.0 Unported

inception

24 September 2006

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current09:26, 28 August 2012Thumbnail for version as of 09:26, 28 August 20121,024 × 1,024 (5 KB)File Upload Bot (Magnus Manske)Transfered from en.wikipedia by User:liftarn using CommonsHelper

The following 4 pages use this file:

Global file usage

The following other wikis use this file: