Langbahn Team – Weltmeisterschaft

File:Convolutional codes PSK QAM LLR.svg

Original file (SVG file, nominally 498 × 374 pixels, file size: 77 KB)

Summary

Description
English: Bit error ratio curves for convolutional codes with different options of digital modulations (QPSK, 8-PSK, 16-QAM, 64-QAM) and LLR calculations ("Exact"[1] and "Approximate"[2]).
Date
Source Own work
Author Kirlf
SVG development
InfoField
 
The SVG code is valid.
 
This diagram was created with MATLAB.
Source code
InfoField

MATLAB code

clear; close all; clc
rng default
M = [4, 8, 16, 64]; % Modulation order
EbNoVec = (0:5)'; % Eb/No values (dB)
numSymPerFrame = 100000; % Number of QAM symbols per frame
berEstSoft = zeros(size(EbNoVec)); 
trellis = poly2trellis(7,[171 133]);
tbl = 32;
rate = 1/2;
decoders = comm.ViterbiDecoder(trellis,'TracebackDepth',tbl,...
'TerminationMethod','Continuous','InputFormat','Unquantized');
for m = 1:length(M)
    k = log2(M(m)); % Bits per symbol
    if M(m) <= 8
        modul = comm.PSKModulator(M(m), 'BitInput', true);
    end
    for n = 1:length(EbNoVec)
        % Convert Eb/No to SNR
        snrdB = EbNoVec(n) + 10*log10(k*rate);
        % Noise variance calculation for unity average signal power.
        noiseVar = 10.^(-snrdB/10);
        % Reset the error and bit counters
        [numErrsSoft_exact, numErrsHard, numBits] = deal(0);
        [numErrsSoft_approx, numErrsHard, numBits] = deal(0);
        
        while (numErrsSoft_exact < 100 OR numErrsSoft_approx < 100)... 
            && numBits < 1e8
            % Generate binary data and convert to symbols
            dataIn = randi([0 1], numSymPerFrame*k, 1);
            
            % Convolutionally encode the data
            dataEnc = convenc(dataIn, trellis);
            
            % QAM modulate
            if M(m) <= 8
                txSig = step(modul, dataEnc);
            else
                txSig = qammod(dataEnc, M(m), 'InputType','bit',...
                               'UnitAveragePower',true);
            end
            % Pass through AWGN channel
            rxSig = awgn(txSig, snrdB, 'measured');
            
            % Demodulate the noisy signal using hard decision (bit) and
            % soft decision (approximate LLR) approaches.       
            if M(m) <= 8
                demods_approx = comm.PSKDemodulator(M(m), ...
                    'BitOutput', true, ...
                    'DecisionMethod', ...
                    'Approximate log-likelihood ratio',...
                    'VarianceSource', 'Property', 'Variance', noiseVar);
                demods_exact = comm.PSKDemodulator(M(m), ...
                    'BitOutput', true, ...
                    'DecisionMethod', 'Log-likelihood ratio',...
                    'VarianceSource', 'Property', 'Variance', noiseVar);
                rxDataSoft_exact = step(demods_exact, rxSig);
                rxDataSoft_approx = step(demods_approx, rxSig);
            else 
                
                rxDataSoft_exact = qamdemod(rxSig, M(m), ...
                    'OutputType','llr', ...
                    'UnitAveragePower',true,'NoiseVariance',noiseVar);
                rxDataSoft_approx = qamdemod(rxSig, M(m), ...
                    'OutputType','approxllr', ...
                    'UnitAveragePower',true,'NoiseVariance',noiseVar);
            end
            % Viterbi decode the demodulated data
            dataSoft_exact  = step(decoders, rxDataSoft_exact );
            dataSoft_approx = step(decoders, rxDataSoft_approx);
            
            % Calculate the number of bit errors in the frame. 
            % Adjust for the decoding delay, 
            % which is equal to the traceback depth.
            numErrsInFrameSoft_exact = biterr(dataIn(1:end-tbl), ...
                dataSoft_exact(tbl+1:end));
            numErrsInFrameSoft_approx = biterr(dataIn(1:end-tbl), ...
                dataSoft_approx(tbl+1:end));
            
            % Increment the error and bit counters
            numErrsSoft_exact = numErrsSoft_exact + ...
                                numErrsInFrameSoft_exact;
            numErrsSoft_approx = numErrsSoft_approx + ...
                                 numErrsInFrameSoft_approx;
            
            numBits = numBits + numSymPerFrame*k;
        end
        
        % Estimate the BER for both methods
        berEstSoft_exact(n, m) = numErrsSoft_exact/numBits;
        berEstSoft_approx(n, m) = numErrsSoft_approx/numBits;
    end
end
semilogy(EbNoVec, berEstSoft_exact(:, 1),'r-o', ...
         EbNoVec, berEstSoft_exact(:, 2),'k-o',...
         EbNoVec, berEstSoft_exact(:, 3),'b-o', ...
         EbNoVec, berEstSoft_exact(:, 4),'c-o',...
         EbNoVec, berEstSoft_approx(:, 1),'r->', ...
         EbNoVec, berEstSoft_approx(:, 2),'k->',...
         EbNoVec, berEstSoft_approx(:, 3),'b->', ...
         EbNoVec, berEstSoft_approx(:, 4),'c->','LineWidth', 1.5)
hold on
legend('QPSK, Exact LLR', ...
       '8PSK, Exact LLR', ...
       '16-QAM, Exact LLR', ...
       '64-QAM, Exact LLR',...
       'QPSK, Approx. LLR', ...
       '8PSK, Approx. LLR', ...
       '16-QAM, Approx. LLR', ...
       '64-QAM, Approx. LLR', ...
       'location','best')
grid
title('Convolutional codes 1/2, AWGN')
xlabel('Eb/No (dB)')
ylabel('Bit Error Rate')

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
  1. Digital modulation: Exact LLR Algorithm (MathWorks)
  2. Digital modulation: Approximate LLR Algorithm (MathWorks)

Captions

Bit error ratio curves for convolutional codes with different options of digital modulations and LLR calculations.

Items portrayed in this file

depicts

creator

some value

author name string: Kirlf
Wikimedia username: Kirlf

copyright status

copyrighted

copyright license

Creative Commons Attribution-ShareAlike 4.0 International

inception

19 January 2021

source of file

original creation by uploader

media type

image/svg+xml

checksum

284c77cbe85a0eb129a982ee85d670437c4ed616

determination method or standard: SHA-1

data size

79,314 byte

height

374 pixel

width

498 pixel

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current16:45, 19 January 2021Thumbnail for version as of 16:45, 19 January 2021498 × 374 (77 KB)KirlfUploaded own work with UploadWizard

The following page uses this file:

Metadata