Langbahn Team – Weltmeisterschaft

File:Chandrayaan-3 Lander.webp

Chandrayaan-3_Lander.webp (608 × 426 pixels, file size: 20 KB, MIME type: image/webp)

Summary

Description
English: Chandrayaan-3 is a follow-on mission to Chandrayaan-2 to demonstrate end-to-end capability in safe landing and roving on the lunar surface. It consists of Lander and Rover configuration. It will be launched by LVM3 from SDSC SHAR, Sriharikota. The propulsion module will carry the lander and rover configuration till 100 km lunar orbit. The propulsion module has Spectro-polarimetry of Habitable Planet Earth (SHAPE) payload to study the spectral and Polari metric measurements of Earth from the lunar orbit.

Lander payloads: Chandra’s Surface Thermophysical Experiment (ChaSTE) to measure the thermal conductivity and temperature; Instrument for Lunar Seismic Activity (ILSA) for measuring the seismicity around the landing site; Langmuir Probe (LP) to estimate the plasma density and its variations. A passive Laser Retroreflector Array from NASA is accommodated for lunar laser ranging studies.

Rover payloads: Alpha Particle X-ray Spectrometer (APXS) and Laser Induced Breakdown Spectroscope (LIBS) for deriving the elemental composition in the vicinity of landing site.

Chandrayaan-3 consists of an indigenous Lander module (LM), Propulsion module (PM) and a Rover with an objective of developing and demonstrating new technologies required for Inter planetary missions. The Lander will have the capability to soft land at a specified lunar site and deploy the Rover which will carry out in-situ chemical analysis of the lunar surface during the course of its mobility. The Lander and the Rover have scientific payloads to carry out experiments on the lunar surface. The main function of PM is to carry the LM from launch vehicle injection till final lunar 100 km circular polar orbit and separate the LM from PM. Apart from this, the Propulsion Module also has one scientific payload as a value addition which will be operated post separation of Lander Module. The launcher identified for Chandrayaan-3 is GSLV-Mk3 which will place the integrated module in an Elliptic Parking Orbit (EPO) of size ~170 x 36500 km.

The mission objectives of Chandrayaan-3 are:

To demonstrate Safe and Soft Landing on Lunar Surface To demonstrate Rover roving on the moon and To conduct in-situ scientific experiments. To achieve the mission objectives, several advanced technologies are present in Lander such as,

Altimeters: Laser & RF based Altimeters Velocimeters: Laser Doppler Velocimeter & Lander Horizontal Velocity Camera Inertial Measurement: Laser Gyro based Inertial referencing and Accelerometer package Propulsion System: 800N Throttleable Liquid Engines, 58N attitude thrusters & Throttleable Engine Control Electronics Navigation, Guidance & Control (NGC): Powered Descent Trajectory design and associate software elements Hazard Detection and Avoidance: Lander Hazard Detection & Avoidance Camera and Processing Algorithm Landing Leg Mechanism. To demonstrate the above said advanced technologies in earth condition, several Lander special tests have been planned and carried out successfully viz.

Integrated Cold Test - For the demonstration of Integrated Sensors & Navigation performance test using helicopter as test platform Integrated Hot test – For the demonstration of closed loop performance test with sensors, actuators and NGC using Tower crane as test platform Lander Leg mechanism performance test on a lunar simulant test bed simulating different touch down conditions. The overall specifications for Chandrayaan-3 is provided below:

Sl No. Parameter Specifications 1. Mission Life (Lander & Rover) One lunar day (~14 Earth days) 2. Landing Site (Prime) 4 km x 2.4 km 69.367621 S, 32.348126 E 3. Science Payloads Lander: Radio Anatomy of Moon Bound Hypersensitive ionosphere and Atmosphere (RAMBHA) Chandra’s Surface Thermo physical Experiment (ChaSTE) Instrument for Lunar Seismic Activity (ILSA) Laser Retroreflector Array (LRA) Rover: Alpha Particle X-Ray Spectrometer (APXS) Laser Induced Breakdown Spectroscope (LIBS) Propulsion Module: Spectro-polarimetry of HAbitable Planet Earth (SHAPE) 4. Two Module Configuration Propulsion Module (Carries Lander from launch injection to Lunar orbit) Lander Module (Rover is accommodated inside the Lander) 5. Mass Propulsion Module: 2148 kg Lander Module: 1752 kg including Rover of 26 kg Total: 3900 kg 6. Power generation Propulsion Module: 758 W Lander Module: 738W, WS with Bias Rover: 50W 7. Communication Propulsion Module: Communicates with IDSN Lander Module: Communicates with IDSN and Rover. Chandrayaan-2 Orbiter is also planned for contingency link. Rover: Communicates only with Lander. 8. Lander Sensors Laser Inertial Referencing and Accelerometer Package (LIRAP) Ka-Band Altimeter (KaRA) Lander Position Detection Camera (LPDC) LHDAC (Lander Hazard Detection & Avoidance Camera) Laser Altimeter (LASA) Laser Doppler Velocimeter (LDV) Lander Horizontal Velocity Camera (LHVC) Micro Star sensor Inclinometer & Touchdown sensors 9. Lander Actuators Reaction wheels – 4 nos (10 Nms & 0.1 Nm) 10. Lander Propulsion System Bi-Propellant Propulsion System (MMH + MON3), 4 nos. of 800 N Throttleable engines & 8 nos. of 58 N; Throttleable Engine Control Electronics 11. Lander Mechanisms Lander leg Rover Ramp (Primary & Secondary) Rover ILSA, Rambha & Chaste Payloads Umbilical connector Protection Mechanism, X- Band Antenna 12. Lander Touchdown specifications Vertical velocity: ≤ 2 m / sec Horizontal velocity: ≤ 0.5 m / sec Slope: ≤ 120 The objectives of scientific payloads planned on Chandrayaan-3 Lander Module and Rover are provided below:

Sl. No Lander Payloads Objectives 1. Radio Anatomy of Moon Bound Hypersensitive ionosphere and Atmosphere (RAMBHA) Langmuir probe (LP) To measure the near surface plasma (ions and electrons) density and its changes with time 2. Chandra’s Surface Thermo physical Experiment (ChaSTE) To carry out the measurements of thermal properties of lunar surface near polar region. 3. Instrument for Lunar Seismic Activity (ILSA) To measure seismicity around the landing site and delineating the structure of the lunar crust and mantle. 4. LASER Retroreflector Array (LRA) It is a passive experiment to understand the dynamics of Moon system. Sl. No Rover Payloads Objectives 1. LASER Induced Breakdown Spectroscope (LIBS) Qualitative and quantitative elemental analysis & To derive the chemical Composition and infer mineralogical composition to further our understanding of Lunar-surface. 2. Alpha Particle X-ray Spectrometer (APXS) To determine the elemental composition (Mg, Al, Si, K, Ca,Ti, Fe) of Lunar soil and rocks around the lunar landing site. Sl. No Propulsion Module Payload Objectives

1. Spectro-polarimetry of HAbitable Planet Earth (SHAPE) Future discoveries of smaller planets in reflected light would allow us to probe into variety of Exo-planets which would qualify for habitability (or for presence of life).
Date
Source https://www.isro.gov.in/Chandrayaan3_New.html
Author Indian Space Research Organisation

Licensing

This file is a copyrighted work of the Government of India, licensed under the Government Open Data License - India (GODL).
Authorization Method & Scope
Following the mandate of the National Data Sharing and Accessibility Policy (NDSAP) of the Government of India that applies to all shareable non-sensitive data available either in digital or analog forms but generated using public funds by various agencies of the Government of India, all users are provided a worldwide, royalty-free, non-exclusive license to use, adapt, publish (either in original, or in adapted and/or derivative forms), translate, display, add value, and create derivative works (including products and services), for all lawful commercial and non-commercial purposes, and for the duration of existence of such rights over the data or information.
Information on Related Items:
The user must acknowledge the provider, source, and license of data by explicitly publishing the attribution statement, including the DOI (Digital Object Identifier), or the URL (Uniform Resource Locator), or the URI (Uniform Resource Identifier) of the data concerned.
The user must not indicate or suggest in any manner that the data provider(s) endorses their use and/or the user.
The data provider(s) are not liable for any errors or omissions, and will not under any circumstances be liable for any loss, injury or damage caused by its use.
The data provider(s) do not guarantee the continued supply of updated or up-to-date versions of the data, and will not be held liable in case the continued supply of updated data is not provided.
Exemptions: The license does not cover the following kinds of data: a. personal information; b. data that is non-shareable and/or sensitive; c. names, crests, logos and other official symbols of the data provider(s); d. data subject to other intellectual property rights, including patents, trade-marks and official marks; e. military insignia; f. identity documents; and g. any data that should not have been publicly disclosed for the grounds provided under section 8 of the Right to Information Act, 2005.

Attribution: Indian Space Research Organisation (GODL-India)

বাংলা  Deutsch  English  español  français  हिन्दी  日本語  മലയാളം  मराठी  русский  中文  中文(简体)  中文(繁體)  中文(臺灣) 

This image, which was originally posted in the source indicated above, has not yet been reviewed by an administrator or reviewer to confirm that the above license is valid. See Category:Unreviewed photos of GODL-India for further instructions.

Captions

Lander or Vikram

Items portrayed in this file

depicts

inception

6 February 2023

media type

image/webp

checksum

9503f2767f2fdf64ad0ab8940184714988d68071

determination method or standard: SHA-1

data size

20,884 byte

height

426 pixel

width

608 pixel

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current14:28, 6 February 2023Thumbnail for version as of 14:28, 6 February 2023608 × 426 (20 KB)ChinakpradhanUploaded a work by Indian Space Research Organisation from https://www.isro.gov.in/Chandrayaan3_New.html with UploadWizard

The following page uses this file:

Global file usage

The following other wikis use this file: