Langbahn Team – Weltmeisterschaft

Draft:List of most massive black holes

This NASA animation shows a size comparison of the supermassive black holes each with an accretion disc.

This is a list of the most massive black holes so far discovered (and probable candidates), ordered by mass. The unit of measurement used is the mass of the Sun (approximately 1.99×1030 kilograms).

Overview

Comparisons of large and small black holes in galaxy OJ 287 to the Solar System. Supermassive black holes, including the former, are the most massive and largest known type of black holes.

A supermassive black hole (SMBH) is an extremely large black hole, on the order of 100,000 to billions of solar masses (M), and is theorized to exist in the center of almost all massive galaxies. In some galaxies, there are even binary systems of supermassive black holes, see the OJ 287 system. Unambiguous dynamical evidence for SMBHs exists only in a handful of galaxies;[1] these include the Milky Way, the Local Group galaxies M31 and M32, and a few galaxies beyond the Local Group, e.g. NGC 4395. In these galaxies, the mean square (or root mean square) velocities of the stars or gas rises as ~1/r near the center, indicating a central point mass. In all other galaxies observed to date, the rms velocities are flat, or even falling, toward the center, making it impossible to state with certainty that a supermassive black hole is present.[1] Nevertheless, it is commonly accepted that the center of nearly every galaxy contains a supermassive black hole.[2] The reason for this assumption is the M–sigma relation, a tight (low scatter) relation between the mass of the hole in the ~10 galaxies with secure detections, and the velocity dispersion of the stars in the bulges of those galaxies.[3] This correlation, although based on just a handful of galaxies, suggests to many astronomers a strong connection between the formation of the black hole and the galaxy itself.[2]

  • Other theories briefly like: supermassive boson star

Caveats

There is extreme difficulty in determining the mass of a particular SMBH, and so they still remain in the field of open research. SMBHs with accurate masses are limited only to galaxies within the Laniakea Supercluster and to active galactic nuclei. Another problem for this list is the method used in determining the mass. Such methods, such as broad emission-line reverberation mapping (BLRM), Doppler measurements, velocity dispersion, and the aforementioned M–sigma relation have not yet been well established. Most of the time, the masses derived from the given methods contradict each other's values.

Although SMBHs are currently theorized to exist in almost all massive galaxies, more massive black holes above 5 billion M, dubbed as 'ultramassive' ('UMBHs'), are rare; with only a handful of these black holes having been discovered to date.

This is the maximum mass of a black hole that models predict, at least for luminous accreting SMBH's. Given the age of the universe and the composition of available matter, there is simply not enough time to grow black holes larger than this mass.[4] At around 1×1010 M, both effects of intense radiation and star formation in the accretion disc slows down black hole growth.[4][5][6][7] New discoveries suggest that many black holes, dubbed 'stupendously large' ('SLABs'), may exceed 100 billion M or even 1 trillion M, and would have been seeded by primordial black holes.[8]

Comparison of the shadow (black) and important surfaces (white) of a black hole, including the event horizon. The spin parameter a is animated, while the left side of the black hole is rotating towards the observer who is assumed to be far away.

Radius

Per the no-hair theorem, the radius of a black hole depends directly on three quantities: the mass, angular momentum, and electric charge. The Schwarzschild radius is a characteristic radius proportional to the mass of an object that corresponds to the radius defining the surface for a Schwarzschild black hole (static, non-rotating and uncharged), in which any object whose radius is smaller than its Schwarzschild radius become a black hole. The surface at the radius acts as the event horizon of the black hole. Rotating or charged black holes (Kerr, Reissner–Nordström, Kerr–Newman) have two event horizons; the outer horizon is referred to the event horizon and the inner horizon is referred to the cauchy horizon. The more the black hole spins and/or has a higher electric charge, the smaller the event horizon is until close to twice smaller than the Schwarszchild radius. Surpassing the upper limit given for the spin parameter or the electric charge would cause two merged event horizons to shrink toward the singularity, resulting a naked singularity obeservable from the outside universe. This is expected theoretically they are unlikely to exist; however, there are potential exceptions such as B3 1715+425, which is believed to be a nearly naked rotating black hole.

Due to their extreme amount of gravity, light rays passing near extremely compact objects likes black holes or "ultracompact" neutron stars are deflected by their strong gravitational field that they can bend their path and magnify background images. This would leave a shadow (often encircled by a bright light ring), which is a boundary 1.5 times the Schwarzschild radius of the object where light can no longer orbit the object multiple times without being eventually captured. As such, the object would appear larger than its surface radius.[9]

For more context regarding radii of black holes depending on their masses, spin parameters, and presence of electric charges, see section Black hole#Properties and structure.

List

Legend
Existence disputed
Likely candidates

This list contains supermassive black holes with masses 5 billion M (5×109 M) or above, determined at least to the order of magnitude. Note that this list is very far from complete, as the Sloan Digital Sky Survey (SDSS) alone detected 200,000 quasars, which likely may be the homes of billion-solar-mass black holes. Due to the very large numbers involved, listed black holes here have their mass values in scientific notation (numbers multiplied to powers of 10). Values with uncertainties are written in parentheses when possible. Note that different entries in this list have different methods and systematics in obtaining their mass values, and hence different levels of confidence in their masses. These methods are specified in their notes.

The radii of the event horzion of all black holes included within the list are based on both the mass and dimensionless spin parameter. Electric charge parameters are excluded from the list as it has been expected that the universe appear to be electrically balanced (or nearly so), thus it is likely that no black hole with a significant electric charge can naturally exist. Any black hole that does not have any measured spin paramater in the list is assumed as non-rotating, hence listed with the Schwarzschild radius based on its measured mass.

Supermassive black holes with masses higher than 5 billion M
Host or black hole name/designation Mass
(in solar mass)
Spin parameter Event horizon radius
(in solar radius)
Mass estimation method[a] Notes
PKS 1508+059 9.77+18.4
−6.22
×1010
[10][11]
~ 415,000 Rb
The above masses are larger than what is predicted by current models of black hole growth, and thus some, if not all, of these mass estimates might be potentially unreliable
(Theoretical limit) 5×1010[4] ~ 212,000 Reported for reference
TON 618 4.07×1010[12] 0.6 156,000 C IV
Holmberg 15A (4.0±0.8)×1010[13] ~ 170,000 Specified obtained through orbit-based, axisymmetric Schwarzschild models; the mass very poorly known as its estimates varies widely between 2.1×109 and up to 3.1×1011 M.
SDSS 143148.09+053558 3.64×1010[12] ~ 155,000
NGC 4874 3.47+6.05
−2.24
×1010
[10][11]
~ 147,000 Rb
SMSS J215728.21-360215.1 (3.4±0.6)×1010[14] ~ 144,000 Mg II
SDSS J102325.31+514251.0 3.31+0.67
−0.56
×1010
[15]
~ 141,000 Mg II
Abell 1201 BCG (3.27±2.12)×1010[16] ~ 139,000 MBH−σe Estimated using strong gravitational lensing from a distant galaxy 1.3 arcseconds separated from the nucleus of the BCG. Beware of ambiguity between the BH mass determination and the galaxy cluster's dark matter profile.[17]
NGC 6166 2.84+0.27
−0.18
×1010
[18]
~ 203,000 Rb Central galaxy of Abell 2199; notable for its hundred thousand light year long relativistic jet.
ESO 383-76 (Abell 3571 BCG) 2.75+4.83
−1.75
×1010
[10][11]
~ 147,000 Rb
2MASS J13260399+7023462 (2.7±0.4)×1010[19] ~ 115,000 FWHM & CIV & ML
ESO 444-46 (Abell 3558-M1) 2.69+4.72
−1.71
×1010
[10][11]
~ 115,000 Rb Brightest cluster galaxy of Abell 3558 in the center of the Shapley Supercluster; estimated using .
UGC 10143 (Abell 2147 BCG) 2.63+4.61
−1.68
×1010
[10][11]
~ 147,000 Rb
NGC 4889 2.00+1.65
−1.52
×1010
[10]
~ 0.00
SDSS J074521.78+734336.1 (1.95±0.05)×1010[15] ~ 0.00 Mg II
OJ 287 (primary) (1.8348±0.0008)×1010[20] 0.381±0.004[21] 75,000 A smaller 100 million M black hole orbits this one in a 12-year period. But this measurement is in question[by whom?] due to the limited number and precision of observed companion orbits.
SBS 1425+606 1.82×1010[12] ~ 156,000
NGC 1600 1.70+0.16
−0.15
×1010
[10][22][23]
~ 0.00 Unprecedentedly massive in relation of its location: an elliptical galaxy host in a sparse environment.
4C 71.07 1.62+0.24
−0.21
×1010
[24]
~ 0.00
QSO B2126-158 (1.51–4.90)×1010[24] ~ 0.00
SDSS J08019.69+373047.3 (1.51±0.31)×1010[15] ~ 0.00 Mg II
SDSS J115954.33+201921.1 (1.41±0.10)×1010[15] ~ 0.00 Mg II
ESO 139-12 1.38+0.40
−0.49
×1010
[24]
~ 0.00
SDSS J075303.34+423130.8 (1.38±0.03)×1010[15] ~ 0.00
SDSS J080430.56+542041.1 (1.35±0.22)×1010[15] ~ 0.00 Mg II
SDSS J144542.75+49024 1.27×1010[12] ~ 156,000
Phoenix A ~1.26×1010[25], 1.8×1010[26] or ≥1×1011[27] ~ 425,000 Cm & cS[27] Higher value consistent with evolutionary modelling of gas accretion and the dynamics and density profiles of the galaxy.[27] Mass has not been measured directly.
SDSS J0100+2802 (1.24±0.19)×1010[28][29] ~ 0.00 Mg II
SDSS J010619.24+00482 1.23×1010[12] ~ 156,000
UGC 579 (Abell 119 BCG) 1.20+1.96
−0.75
×1010
[10][11]
~ 147,000 Rb
SDSS J081855.77+095848.0 (1.20±0.06)×1010[15] ~ 0.00 Mg II
NGC 1270 1.2×1010[30] ~ 0.00 Elliptical galaxy located in the Perseus Cluster. Also is a low-luminosity AGN (LLAGN).[31]
SDSS J134743.29+49562 1.14×1010[12] ~ 156,000
ESO 444-72 (Abell 3562 BCG) 1.12+1.83
−0.70
×1010
[10][11]
~ 147,000 Rb
SDSS J082535.19+512706.3 (1.12±0.20)×1010[15] ~ 0.00
SDSS J101336.37+56153 1.12×1010[12] ~ 156,000
S5 0014+81 (1.1–1.38)×1010[32] 0.9–0.9982[32] 0.00 Once thought
SDSS J013127.34-032100.1 (1.1±0.2)×1010[33] ~ 0.00 ADSM[33]
6C 021252+733537 1.0+2.72
−0.86
×1010
[24]
~ 0.00
APM 08279+5255 1.0+0.17
−0.13
×1010
[34]
≤0.7[35] 36,400 RM & Si IV & C IV[34]
PSO J334.2028+01.4075 1×1010[36] ~ 0.00 There are actually two black holes, orbiting at each other in a close pair with a 542-day period. The largest one is quoted, while the smaller one's mass is not defined.[36]
PGC 1900245 1×1010[37] ~ 0.00
NGC 1281 1×1010[38] ~ 0.00 Compact elliptical galaxy in the Perseus Cluster. Mass estimates range from 10 billion M down to <5 billion M.[39]
SDSS J015741.57-010629.6 (9.8±1.4)×109[15] ~ 0.00
SDSS 143645.80+633637 9.31×109[12] ~ 156,000
NGC 3842 9.12+3.5
−2.5
×109
[citation needed]
~ 0.00 Brightest galaxy in the Leo Cluster
SDSS J230301.45-093930.7 (9.12±0.88)×109[15] ~ 0.00 Mg II
4C 11.69 8.91+14.53
−6.96
×109
[24]
~ 0.00
SDSS 113829.33+040101 8.65×109[12] ~ 156,000
QSO B2149-306 8.32+23.3
−7.67
×109
[24]
~ 0.00
SDSS J140821.67+025733.2 8×109[40] 0.97[21] 21,100 Mg II
SDSS J075303.33+42313 7.85×109[12] ~ 156,000
SDSS 081227.19+075732 7.85×109[12] ~ 156,000
SDSS J075819.70+202300.9 (7.8±3.9)×109[15] ~ 0.00
6C 001403+811827 7.41+118.48
−6.97
×109
[24]
~ 0.00
SDSS J083700.82+35055 7.38×109[12] ~ 156,000
SDSS J143835.95+43145 7.33×109[12] ~ 156,000
NGC 5419 7.24+2.74
−1.91
×109
[41]
~ 0.00 cS Estimated from the stellar velocity distribution. A secondary satellite SMBH may orbit around 70 parsecs.[41]
SDSS J083946.22+51120 7.13×109[12] ~ 156,000
SWIFT J1948.4-7975 6.92+3.08
−1.91
×109
[24]
~ 0.00
CID-947 6.9+0.8
−1.2
×109
[42]
~ 0.00 Constitutes 10% of the total mass of its host galaxy.
SDSS J163636.92+31571 6.79×109[12] ~ 156,000
LEDA 214543 6.76+7.36
−3.52
×109
[43]
~ 156,000
CGCG 367-009 6.61+7.20
−3.44
×109
[43]
~ 156,000
SDSS 123442.16+052126 6.55×109[12] ~ 156,000
SDSS J080956.02+502000.9 (6.46±0.45)×109[15] ~ 0.00
SDSS 081331.28+254503 6.34×109[12] ~ 156,000
UGC 12282 6.31+7.82
−3.49
×109
[43]
~ 156,000
NGC 4686 6.31+6.28
−3.15
×109
[43]
~ 156,000
SDSS J014214.75+002324.2 (6.31±1.16)×109[15] ~ 0.00 Mg II
SDSS J014049.18-08394 6.27×109[12] ~ 156,000
SDSS J145408.95+51144 6.17×109[12] ~ 156,000
SDSS 204536.56-010147 6.15×109[12] ~ 156,000
SDSS J150620.48+46064 6.14×109[12] ~ 156,000
SDSS J105756.28+45555 6.04×109[12] ~ 156,000
Hercules A (3C 348) 5.9+0.42
−0.39
×109
[44]
~ 25,000 Notable for its million light-year long relativistic jet. Another estimate gives 1.519×1010 M.[45]
SDSS 135439.70+301649 5.78×109[12] ~ 156,000
PG 1425+267 5.46×109[12] ~ 156,000
Abell 2261 BCG[b] (5.37–64.6)×109[10][11] ~ 274,000 Rb
Messier 87 (NGC 4486) 5.37+0.37
−0.25
×109
[47]
0.90±0.05[48] 19,800 Central galaxy of the Virgo Cluster; the first black hole directly imaged.
SDSS J025905.63+001121.9 (5.25±0.73)×109[15] ~ 22,300
QSO B2005+40 (5.13–9.55)×109[24] ~ 0.00
SDSS J094202.04+042244.5 (5.13±0.71)×109[15] ~ 21,800
SDSS J162520.31+22583 5.01×109[12] ~ 156,000
QSO B0746+254 5×109[49] ~ 0.00

Listed below are some notable black holes under five billion solar masses, for the purpose of comparison.

Notable supermassive black holes with mass less than 5 billion M
Host or black hole name/designation Mass
(in solar mass)
Spin parameter Event horizon radius
(in solar radius)
Mass estimation method Notes
H1821+643 3.89×109[43][50] 0.62+0.22
−0.37
[51][52]
6,060
Cygnus A (2.5±0.7)×109[53] ~ 0.00 Brightest extrasolar radio source in the sky as seen at frequencies above 1 GHz.
Q0906+6930 2×109[54] ~ 0.00 Most distant blazar, at z = 5.47
QSO J0313–1806 (1.6±0.4)×109[55] ~ 0.00
NGC 1277 1.2+0.4
−0.3
×109
[56]
~ 0.00 Once thought to harbor a black hole so large that it contradicted modern galaxy formation and evolutionary theories,[57] re-analysis of the data revised it downward to roughly a third of the original estimate.[58] and then one tenth.[56]
ULAS J1342+0928 9.1+1.3
−1.4
×108
[59]
~ 0.00 One of most distant quasars at z=7.54[60]
NGC 3115 8.8+10.0
−2.7
×108
[61]
~ 0.00
Sombrero Galaxy (6.4±0.4)×109[61] ~ 0.00 Bolometrically most luminous galaxy in the local universe.
NGC 4261 (5±1)×108[61] ~ 0.00 Notable for its 88,000 ly long relativistic jet.[62]
NGC 1399 (4.7±0.6)×108[61] ~ 0.00 Central galaxy of the Fornax Cluster
4C +74.13 (4.07–513)×108[10][11] 0.9[63] 156,000 Rb Break radius of 0.5 kpc core of the central galaxy.[10][11] Produced a colossal AGN outburst after accreting 600 million M worth of material. Previous indirect assumptions about the efficiencies of gas accretion and jet power yield a lower limit of 1 billion M.[64][65][66]
Messier 59 (3.9±0.4)×108[61] ~ 0.00 This black hole has a retrograde rotation.[67]
3C 273 (2.6±1.1)×108[68] ~ 0.00 Brightest quasar in the sky
Messier 82 (Cigar Galaxy) (1.6–10)×108[69] ~ 0.00 Prototype starburst galaxy.[70]
NGC 7727 1.54+0.18
−0.15
×108
[71]
~ 0.00 With 6.3×106 M companion and the closest confirmed BBH to Earth.
Andromeda Galaxy 1.4+0.65
−0.45
×108
[72][73]
0.44[74] 564 S/G Nearest large galaxy to the Milky Way; the black hole is localed in P2 in 2C 56, the core of the galaxy.
Centaurus A (6.63±4.89)×107[75] ~ 0.00 Also notable for its million light-year long relativistic jet.[76]
NGC 5548 5×107[77] ~ 0.00
UHZ1 4×107[77] ~ 0.00 Lbol First detected candidate for an overmassive (or outsize) black hole galaxy (OBG), a class of transient and high-redshift objects that are heavy initial direct collapse black hole seeds that likely formed from gas clouds or supermassive stars.
M60-UCD1 2.1+1.4
−0.7
×107
[78]
~ 0.00 Constitutes 15% of the mass of its host galaxy.
RX J1242.6−1119A 5.3×106[79] ~ 0.00 Observed by the Chandra X-ray Observatory to be tidally disrupting a star.[80][81]
Milky Way (Sagittarius A*) 4.0+1.1
−0.6
×106
[82]
0.94[83] 11.4 The black hole at the center of the Milky Way; the second black hole directly imaged.
Messier 32 (2.4±1.0)×106 ~ 11.4 A dwarf satellite galaxy of the Andromeda Galaxy (see above).
SDSS J160135.95+311353.7 1×105[84] ~ 11.4

See also

Notes

  1. ^ Methods for calculating the radius:
  2. ^ This galaxy has not been found to contain an active SMBH of at least 1010 M, implying that either the central black hole is accreting at a low level or has a much smaller mass rather below 1010 M.[46]

References

  1. ^ a b Merritt, David (2013). Dynamics and Evolution of Galactic Nuclei. Princeton, NJ: Princeton University Press. p. 23. ISBN 978-0-691-15860-0.
  2. ^ a b King, Andrew (2003-09-15). "Black Holes, Galaxy Formation, and the MBH-σ Relation". The Astrophysical Journal Letters. 596 (1): L27 – L29. arXiv:astro-ph/0308342. Bibcode:2003ApJ...596L..27K. doi:10.1086/379143. S2CID 9507887.
  3. ^ Ferrarese, Laura; Merritt, David (2000-08-10). "A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies". The Astrophysical Journal. 539 (1). The American Astronomical Society: L9–12. arXiv:astro-ph/0006053. Bibcode:2000ApJ...539L...9F. doi:10.1086/312838. S2CID 6508110.
  4. ^ a b c King, Andrew (February 2016). "How big can a black hole grow?". Monthly Notices of the Royal Astronomical Society: Letters. 456 (1): L109 – L112. arXiv:1511.08502. Bibcode:2016MNRAS.456L.109K. doi:10.1093/mnrasl/slv186. S2CID 40147275.
  5. ^ Trosper, Jaime (May 5, 2014). "Is There a Limit to How Large Black Holes Can Become?". futurism.com. Retrieved November 27, 2018.
  6. ^ Clery, Daniel (December 21, 2015). "Limit to how big black holes can grow is astonishing". sciencemag.org. Retrieved November 27, 2018.
  7. ^ "Black holes could grow as large as 50 billion suns before their food crumbles into stars, research shows". University of Leicester. Retrieved November 27, 2018.
  8. ^ September 2020, Paul Sutter 29 (29 September 2020). "Black holes so big we don't know how they form could be hiding in the universe". Space.com. Retrieved 2021-02-06.{{cite web}}: CS1 maint: numeric names: authors list (link)
  9. ^ Perlick, Volker; Tsupko, Oleg Yu. (2022). "Calculating black hole shadows: Review of analytical studies". Physics Reports. 947: 1–39. arXiv:2105.07101. doi:10.1016/j.physrep.2021.10.004.
  10. ^ a b c d e f g h i j k l Dullo, B.T. (22 November 2019). "The Most Massive Galaxies with Large Depleted Cores: Structural Parameter Relations and Black Hole Masses". The Astrophysical Journal. 886 (2): 80. arXiv:1910.10240. Bibcode:2019ApJ...886...80D. doi:10.3847/1538-4357/ab4d4f. S2CID 204838306.
  11. ^ a b c d e f g h i j Dullo, B.T.; de Paz, A.G.; Knapen, J.H. (18 February 2021). "Ultramassive black holes in the most massive galaxies: MBH−σ versus MBH−Rb". The Astrophysical Journal. 908 (2): 134. arXiv:2012.04471. Bibcode:2021ApJ...908..134D. doi:10.3847/1538-4357/abceae. S2CID 227745078.
  12. ^ a b c d e f g h i j k l m n o p q r s t u v w x y Ge, Xue; Bi-Xuan, Zhao; Wei-Hao, Bian; Green Richard, Frederick (21 March 2019). "The Blueshift of the C IV Broad Emission Line in QSOs". The Astronomical Journal. 157 (4): 14. arXiv:1903.08830. Bibcode:2019AJ....157..148G. doi:10.3847/1538-3881/ab0956.
  13. ^ Mehrgan, K.; Thomas, J.; Saglia, R.; Massalay, X.; Erwin, P.; Bender, R.; Kluge, M.; Fabricius, M. (2019). "A 40-billion solar mass black hole in the extreme core of Holm 15A, the central galaxy of Abell 85". The Astrophysical Journal. 887 (2): 195. arXiv:1907.10608. Bibcode:2019ApJ...887..195M. doi:10.3847/1538-4357/ab5856. S2CID 198899965.
  14. ^ Christopher A Onken; Fuyan Bian; Xiaohui Fan; Feige Wang; Christian Wolf; Jinyi Yang (August 2020), "thirty-four billion solar mass black hole in SMSS J2157–3602, the most luminous known quasar", Monthly Notices of the Royal Astronomical Society, 496 (2): 2309, arXiv:2005.06868, Bibcode:2020MNRAS.496.2309O, doi:10.1093/mnras/staa1635
  15. ^ a b c d e f g h i j k l m n o Zuo, Wenwen; Wu, Xue-Bing; Fan, Xiaohui; Green, Richard; Wang, Ran; Bian, Fuyan (2014). "Black Hole Mass Estimates and Rapid Growth of Supermassive Black Holes in Luminous $z \sim$ 3.5 Quasars". The Astrophysical Journal. 799 (2): 189. arXiv:1412.2438. Bibcode:2015ApJ...799..189Z. doi:10.1088/0004-637X/799/2/189. S2CID 73642040.
  16. ^ "Abell 1201: detection of an ultramassive black hole in a strong gravitational lens", Monthly Notices of the Royal Astronomical Society, 521 (3): 3298–3322, May 2023, doi:10.1093/mnras/stad587 {{citation}}: Unknown parameter |authors= ignored (help) (published online 29 March 2023 )
  17. ^ Smith, R. J.; Lucey, J. R.; Edge, A. C. (2017). "Stellar dynamics in the strong-lensing central galaxy of Abell 1201: A low stellar mass-to-light ratio a large central compact mass and a standard dark matter halo". Monthly Notices of the Royal Astronomical Society. 1706 (1): 383–393. arXiv:1706.07055. Bibcode:2017MNRAS.471..383S. doi:10.1093/mnras/stx1573. S2CID 54757451.
  18. ^ Magorrian, J.; Tremaine, S.; Richstone, D.; Bender, R.; Bower, G.; Dressler, A.; Faber, S.~M.; Gebhardt, K.; Green, R.; Grillmair, C.; Kormendy, J.; Lauer, T. (June 1998). "The Demography of Massive Dark Objects in Galaxy Centers". The Astronomical Journal. 115 (6): 2285–2305. arXiv:astro-ph/9708072. Bibcode:1998AJ....115.2285M. doi:10.1086/300353. S2CID 17256372.
  19. ^ Jeram, Sarik; Gonzalez, Anthony; Eikenberry, Stephen; Stern, Daniel; Mendes De Oliveira, Claudia Lucia; Izuti Nakazono, Lilianne Mariko; Ackley, Kendall (2020). "An Extremely Bright QSO at z = 2.89". The Astrophysical Journal. 899 (1): 76. arXiv:2006.11915. Bibcode:2020ApJ...899...76J. doi:10.3847/1538-4357/ab9c95. S2CID 219966890.
  20. ^ Valtonen, M. J.; Ciprini, S.; Lehto, H. J. (2012). "On the masses of OJ287 black holes". Monthly Notices of the Royal Astronomical Society. 427 (1): 77–83. arXiv:1208.0906. Bibcode:2012MNRAS.427...77V. doi:10.1111/j.1365-2966.2012.21861.x. S2CID 118483466.
  21. ^ a b Zu, Lei; Feng, Lei; Yuan, Qiang; Fan, Yi-Zhong (2020). "Stringent constraints on the light boson model with supermassive black hole spin measurements". The European Physical Journal Plus. 135 (9). arXiv:2007.03222. doi:10.1140/epjp/s13360-020-00734-9.
  22. ^ Thomas, J.; Ma, C.-P.; McConnell, N. J.; Greene, J. E.; Blakeslee, J. P.; Janish, R. (2016). "A 17-billion-solar-mass black hole in a group galaxy with a diffuse core". Nature. 532 (7599): 340–342. arXiv:1604.01400. Bibcode:2016Natur.532..340T. doi:10.1038/nature17197. PMID 27049949. S2CID 4454301.
  23. ^ Morrow, Ashley (5 April 2016). "Behemoth Black Hole Found in an Unlikely Place".
  24. ^ a b c d e f g h i Mejía-Restrepo Julian E.; et al. (11 April 2022). "BASS. XXV. DR2 Broad-line-based Black Hole Mass Estimates and Biases from Obscuration". The Astrophysical Journal Supplement Series. 261 (1): 29. arXiv:2204.05321. Bibcode:2022ApJS..261....5M. doi:10.3847/1538-4365/ac6602. ISSN 1538-4365. S2CID 248118783.
  25. ^ Rusinek, Katarzyna; Sikora, Marek; Kozieł-Wierzbowska, Dorota; Gupta, Maitrayee (8 September 2020). "On the Diversity of Jet Production Efficiency in Swift/BAT AGNs". The Astrophysical Journal. 900 (2): 13. arXiv:2006.11049. Bibcode:2020ApJ...900..125R. doi:10.3847/1538-4357/aba75f. ISSN 1538-4357. S2CID 219955960.
  26. ^ Prasad, Deovrat; Sharma, Prateek; Babul, Arif; Voit, Gerard M.; O'Shea, Brian W. (6 May 2020). "Cool-core cycles and Phoenix". Monthly Notices of the Royal Astronomical Society. 495 (1): 594–599. arXiv:1909.12888. Bibcode:2020MNRAS.495..594P. doi:10.1093/mnras/staa1247. ISSN 0035-8711. S2CID 203593566.
  27. ^ a b c Brockamp, M.; Baumgardt, H.; Britzen, S.; Zensus, A. (January 2016). "Unveiling Gargantua: A new search strategy for the most massive central cluster black holes". Astronomy & Astrophysics. 585. A153. arXiv:1509.04782. Bibcode:2016A&A...585A.153B. doi:10.1051/0004-6361/201526873. S2CID 54641547.
  28. ^ Wu, X.; Wang, F.; Fan, X.; Yi, Weimin; Zuo, Wenwen; Bian, Fuyan; Jiang, Linhua; McGreer, Ian D.; Wang, Ran; Yang, Jinyi; Yang, Qian; Thompson, David; Beletsky, Yuri (25 February 2015). "An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30". Nature. 518 (7540): 512–515. arXiv:1502.07418. Bibcode:2015Natur.518..512W. doi:10.1038/nature14241. PMID 25719667. S2CID 4455954.
  29. ^ "Astronomers Discover Record-Breaking Quasar". Sci-News.com. 2015-02-25. Retrieved 2015-02-27.
  30. ^ Ferré-Mateu, Anna; Mezcua, Mar; Trujillo, Ignacio; Balcells, Marc; Bosch, Remco C. E. van den (2015-07-21). "Massive Relic Galaxies Challenge the Co-Evolution of Super-Massive Black Holes and Their Host Galaxies". The Astrophysical Journal. 808 (1): 79. arXiv:1506.02663. Bibcode:2015ApJ...808...79F. doi:10.1088/0004-637X/808/1/79. ISSN 1538-4357. S2CID 118777377.
  31. ^ Park, Songyoun; Yang, Jun; Oonk, J. B. Raymond; Paragi, Zsolt (2016-11-22). "Discovery of five low-luminosity active galactic nuclei at the centre of the Perseus cluster". Monthly Notices of the Royal Astronomical Society. 465 (4): 3943–3948. arXiv:1611.05986. Bibcode:2017MNRAS.465.3943P. doi:10.1093/mnras/stw3012. ISSN 0035-8711. S2CID 53538944.
  32. ^ a b Campitiello, Samuele; Ghisellini, Gabriele; Sbarrato, Tullia; Calderone, Giorgio (2018). "How to constrain mass and spin of supermassive black holes through their disk emission". Astronomy & Astrophysics. 612: A59. arXiv:1702.00011. doi:10.1051/0004-6361/201731897.
  33. ^ a b Ghisellini, G.; Tagliaferri, G.; Sbarrato, T.; Gehrels, N. (2015). "SDSS J013127.34-032100.1: A candidate blazar with a 11 billion solar mass black hole at $z$=5.18". Monthly Notices of the Royal Astronomical Society: Letters. 450: L34 – L38. arXiv:1501.07269. Bibcode:2015MNRAS.450L..34G. doi:10.1093/mnrasl/slv042. S2CID 118449836.
  34. ^ a b Saturni, F. G.; Trevese, D.; Vagnetti, F.; Perna, M.; Dadina, M. (2016). "A multi-epoch spectroscopic study of the BAL quasar APM 08279+5255. II. Emission- and absorption-line variability time lags". Astronomy and Astrophysics. 587: A43. arXiv:1512.03195. Bibcode:2016A&A...587A..43S. doi:10.1051/0004-6361/201527152. S2CID 118548618.
  35. ^ Hagino, Kouichi; Done, Chris; Odaka, Hirokazu; Watanabe, Shin; Takahashi, Tadayuki (2017). "Revisiting the extremely fast disc wind in a gravitationally lensed quasar APM 08279+5255". Monthly Notices of the Royal Astronomical Society. 468 (2): 1442–1452. arXiv:1611.00512. doi:10.1093/mnras/stx559.
  36. ^ a b Liu, Tingting; Gezari, Suvi; Heinis, Sebastien; Magnier, Eugene A.; Burgett, William S.; Chambers, Kenneth; Flewelling, Heather; Huber, Mark; Hodapp, Klaus W.; Kaiser, Nicholas; Kudritzki, Rolf-Peter; Tonry, John L.; Wainscoat, Richard J.; Waters, Christopher (2015). "A Periodically Varying Luminous Quasar at z=2 from the Pan-STARRS1 Medium Deep Survey: A Candidate Supermassive Black Hole Binary in the Gravitational Wave-Driven Regime". The Astrophysical Journal. 803 (2): L16. arXiv:1503.02083. Bibcode:2015ApJ...803L..16L. doi:10.1088/2041-8205/803/2/L16. S2CID 118580031.
  37. ^ Hlavacek-Larrondo, J.; Allen, S. W.; Taylor, G. B.; Fabian, A. C.; Canning, R. E. Ato.; Werner, N.; Sanders, J. S.; Grimes, C. K.; Ehlert, S.; von Der Linden, A. (2013). "Probing the extreme realm of AGN feedback in the massive galaxy cluster, RX J1532.9+3021". The Astrophysical Journal. 777 (2): 163. arXiv:1306.0907. Bibcode:2013ApJ...777..163H. doi:10.1088/0004-637X/777/2/163. S2CID 118597740.
  38. ^ Yıldırım, Akın; Bosch, Van Den; E, Remco C.; van de Ven, Glenn; Dutton, Aaron; Läsker, Ronald; Husemann, Bernd; Walsh, Jonelle L.; Gebhardt, Karl (2016-02-11). "The massive dark halo of the compact early-type galaxy NGC 1281". Monthly Notices of the Royal Astronomical Society. 456 (1): 538–553. arXiv:1511.03131. Bibcode:2016MNRAS.456..538Y. doi:10.1093/mnras/stv2665. ISSN 0035-8711. S2CID 118483580.
  39. ^ Ferré-Mateu, Anna; Mezcua, Mar; Trujillo, Ignacio; Balcells, Marc; Bosch, Remco C. E. van den (2015-07-21). "Massive Relic Galaxies Challenge the Co-Evolution of Super-Massive Black Holes and Their Host Galaxies". The Astrophysical Journal. 808 (1): 79. arXiv:1506.02663. Bibcode:2015ApJ...808...79F. doi:10.1088/0004-637x/808/1/79. ISSN 1538-4357. S2CID 118777377.
  40. ^ Guo, Hengxiao; J. Barth, Aaron (2021). "The Quasar SDSS J140821.67+025733.2 Does Not Contain a 196 Billion Solar Mass Black Hole". American Astronomical Society. 5 (1): 2. Bibcode:2021RNAAS...5....2G. doi:10.3847/2515-5172/abd7f9.
  41. ^ a b Mazzalay, X.; Thomas, J.; Saglia, R. P.; Wegner, G. A.; Bender, R.; Erwin, P.; Fabricius, M. H.; Rusli, S. P. (2016). "The supermassive black hole and double nucleus of the core elliptical NGC 5419". Monthly Notices of the Royal Astronomical Society. 462 (3): 2847–2860. arXiv:1607.06466. Bibcode:2016MNRAS.462.2847M. doi:10.1093/mnras/stw1802. S2CID 119236364.
  42. ^ Trakhtenbrot, Benny; Megan Urry, C.; Civano, Francesca; Rosario, David J.; Elvis, Martin; Schawinski, Kevin; Suh, Hyewon; Bongiorno, Angela; Simmons, Brooke D. (2015). "An Over-Massive Black Hole in a Typical Star-Forming Galaxy, 2 Billion Years After the Big Bang". Science. 349 (168): 168–171. arXiv:1507.02290. Bibcode:2015Sci...349..168T. doi:10.1126/science.aaa4506. PMID 26160942. S2CID 22406584.
  43. ^ a b c d e Koss, Michael; Trakhtenbrot, Benny; Ricci, Claudio; Lamperti, Isabella; Oh, Kyuseok; Berney, Simon; Schawinski, Kevin; Baloković, Mislav; Baronchelli, Linda; Crenshaw, D. Michael; Fischer, Travis; Gehrels, Neil; Harrison, Fiona; Hashimoto, Yasuhiro; Hogg, Drew; Ichikawa, Kohei; Masetti, Nicola; Mushotzky, Richard; Sartori, Lia; Stern, Daniel; Treister, Ezequiel; Ueda, Yoshihiro; Veilleux, Sylvain; Winter, Lisa (2017). "BAT AGN Spectroscopic Survey. I. Spectral Measurements, Derived Quantities, and AGN Demographics". The Astrophysical Journal. 850: 74. arXiv:1707.08123. doi:10.3847/1538-4357/aa8ec9.
  44. ^ Mezcua, M.; Hlavacek-Larrondo, J.; Lucey, J. R.; Hogan, M. T.; Edge, A. C.; McNamara, B. R. (2018). "The most massive black holes on the Fundamental Plane of black hole accretion". Monthly Notices of the Royal Astronomical Society. 474: 1342–1360. arXiv:1710.10268. doi:10.1093/mnras/stx2812.
  45. ^ McAlpine, Stuart; Helly, John C.; Schaller, Matthieu; Sawala, Till; Lavaux, Guilhem; Jasche, Jens; Frenk, Carlos S.; Jenkins, Adrian; Lucey, John R.; Johansson, Peter H. (2022). "SIBELIUS-DARK: A galaxy catalogue of the local volume from a constrained realization simulation". Monthly Notices of the Royal Astronomical Society. 512 (4): 5823–5847. arXiv:2202.04099. doi:10.1093/mnras/stac295.
  46. ^ Gültekin, Kayhan; Burke-Spolaor, Sarah; Lauer, Tod R.; w. Lazio, T. Joseph; Moustakas, Leonidas A.; Ogle, Patrick; Postman, Marc (2021). "Chandra Observations of Abell 2261 Brightest Cluster Galaxy, a Candidate Host to a Recoiling Black Hole". The Astrophysical Journal. 906 (1): 48. arXiv:2010.13980. Bibcode:2021ApJ...906...48G. doi:10.3847/1538-4357/abc483. S2CID 225075966.
  47. ^ Liepold, Emily R.; Ma, Chung-Pei; Walsh, Jonelle L. (2023). "Keck Integral-field Spectroscopy of M87 Reveals an Intrinsically Triaxial Galaxy and a Revised Black Hole Mass". The Astrophysical Journal Letters. 945 (2): L35. doi:10.3847/2041-8213/acbbcf.
  48. ^ Tamburini, Fabrizio; Thidé, Bo; Della Valle, Massimo (2020). "Measurement of the spin of the M87 black hole from its observed twisted light". Monthly Notices of the Royal Astronomical Society: Letters. 492: L22 – L27. arXiv:1904.07923. doi:10.1093/mnrasl/slz176.
  49. ^ Ghisellini, G.; Ceca, R. Della; Volonteri, M.; Ghirlanda, G.; Tavecchio, F.; Foschini, L.; Tagliaferri, G.; Haardt, F.; Pareschi, G.; Grindlay, J. (2010). "Chasing the heaviest black holes in active galactic nuclei, the largest black hole". Monthly Notices of the Royal Astronomical Society. 405 (1): 387. arXiv:0912.0001. Bibcode:2010MNRAS.405..387G. doi:10.1111/j.1365-2966.2010.16449.x. S2CID 40214759.
  50. ^ Fukuchi, Hikaru; Ichikawa, Kohei; Akiyama, Masayuki; Ricci, Claudio; Chon, Sunmyon; Kokubo, Mitsuru; Liu, Ang; Hashimoto, Takuya; Izumi, Takuma (2022). "H1821+643: The Most X-Ray and Infrared Luminous Active Galactic Nucleus (AGN) in the Swift/BAT Survey in the Process of Rapid Stellar and Supermassive Black Hole Mass Assembly". The Astrophysical Journal. 940: 7. doi:10.3847/1538-4357/ac9304.
  51. ^ Sisk-Reynés, Júlia; Reynolds, Christopher S.; Matthews, James H.; Smith, Robyn N. (2022). "Evidence for a moderate spin from X-ray reflection of the high-mass supermassive black hole in the cluster-hosted quasar H1821+643". Monthly Notices of the Royal Astronomical Society. 514 (2): 2568–2580. arXiv:2205.12974. doi:10.1093/mnras/stac1389.
  52. ^ Garofalo, David; Singh, Chandra B. (2022). "The Unusual Active Galaxy H1821+643 and the Elusive Nature of FRI Quasars". Publications of the Astronomical Society of the Pacific. 134 (1039). arXiv:2209.01964. doi:10.1088/1538-3873/ac883a.
  53. ^ Tadhunter, C.; Marconi, A.; Axon, D.; Wills, K.; Robinson, T. G.; Jackson, N. (2003). "Spectroscopy of the near-nuclear regions of Cygnus A: Estimating the mass of the supermassive black hole". Monthly Notices of the Royal Astronomical Society. 342 (3): 861–875. doi:10.1046/j.1365-8711.2003.06588.x.
  54. ^ Romani, Roger W. (2006). "The Spectral Energy Distribution of the High-z Blazar Q0906+6930". The Astronomical Journal. 132 (5): 1959–1963. arXiv:astro-ph/0607581. Bibcode:2006AJ....132.1959R. doi:10.1086/508216. S2CID 119331684.
  55. ^ Wang, Feige; Yang, Jinyi; Fan, Xiaohui; Hennawi, Joseph F.; Barth, Aaron J.; Banados, Eduardo; Bian, Fuyan; Boutsia, Konstantina; Connor, Thomas; Davies, Frederick B.; Decarli, Roberto; Eilers, Anna-Christina; Farina, Emanuele Paolo; Green, Richard; Jiang, Linhua; Li, Jiang-Tao; Mazzucchelli, Chiara; Nanni, Riccardo; Schindler, Jan-Torge; Venemans, Bram; Walter, Fabian; Wu, Xue-Bing; Yue, Minghao (2021). "A Luminous Quasar at Redshift 7.642". The Astrophysical Journal Letters. 907: L1. arXiv:2101.03179. doi:10.3847/2041-8213/abd8c6.
  56. ^ a b Graham, Alister W.; Durré, Mark; Savorgnan, Giulia A. D.; Medling, Anne M.; Batcheldor, Dan; Scott, Nicholas; Watson, Beverly; Marconi, Alessandro (1 March 2016). "A Normal Supermassive Black Hole in NGC 1277". The Astrophysical Journal. 819 (1): 43. arXiv:1601.05151. Bibcode:2016ApJ...819...43G. doi:10.3847/0004-637X/819/1/43. ISSN 0004-637X. S2CID 36974319.
  57. ^ van den Bosch, Remco C. E.; et al. (29 Nov 2012). "An over-massive black hole in the compact lenticular galaxy NGC 1277". Nature. 491 (7426): 729–731. arXiv:1211.6429. Bibcode:2012Natur.491..729V. doi:10.1038/nature11592. PMID 23192149. S2CID 205231230.
  58. ^ Emsellem, Eric (Aug 2013). "Is the black hole in NGC 1277 really overmassive?". Monthly Notices of the Royal Astronomical Society. 433 (3): 1862–1870. arXiv:1305.3630. Bibcode:2013MNRAS.433.1862E. doi:10.1093/mnras/stt840. S2CID 54011632.
  59. ^ Onoue, Masafusa; Bañados, Eduardo; Mazzucchelli, Chiara; Venemans, Bram P.; Schindler, Jan-Torge; Walter, Fabian; Hennawi, Joseph F.; Andika, Irham Taufik; Davies, Frederick B.; Decarli, Roberto; Farina, Emanuele P.; Jahnke, Knud; Nagao, Tohru; Tominaga, Nozomu; Wang, Feige (2020). "No Redshift Evolution in the Broad-line-region Metallicity up to z = 7.54: Deep Near-infrared Spectroscopy of ULAS J1342+0928". The Astrophysical Journal. 898 (2): 105. arXiv:2006.16268. doi:10.3847/1538-4357/aba193.
  60. ^ Cite error: The named reference NAT-20171206 was invoked but never defined (see the help page).
  61. ^ a b c d e Savorgnan, Giulia A. D.; Graham, Alister W.; Marconi, Alessandro; Sani, Eleonora (2016). "SUPERMASSIVE BLACK HOLES AND THEIR HOST SPHEROIDS. II. THE RED AND BLUE SEQUENCE IN THE MBH–M*,SPH DIAGRAM". The Astrophysical Journal. 817: 21. arXiv:1511.07437. doi:10.3847/0004-637X/817/1/21.
  62. ^ "The Giant Elliptical Galaxy NGC 4261". Astronomy 162 (Dept. Physics & Astronomy University of Tennessee). Retrieved 2010-05-02.
  63. ^ Li, Shuang-Liang; Cao, Xinwu (2012). "Constraints on Jet Formation Mechanisms with the Most Energetic Giant Outbursts in Ms 0735+7421". The Astrophysical Journal. 753: 24. doi:10.1088/0004-637X/753/1/24.
  64. ^ Most Powerful Eruption In The Universe Discovered NASA/Marshall Space Flight Center (ScienceDaily) January 6, 2005
  65. ^ McNamara, B. R.; Nulsen, P. E. J.; Wise, M. W.; Rafferty, D. A.; Carilli, C.; Sarazin, C. L.; Blanton, E. L. (2005). "The heating of gas in a galaxy cluster by X-ray cavities and large-scale shock fronts". Nature. 433 (7021): 45–47. Bibcode:2005Natur.433...45M. doi:10.1038/nature03202. PMID 15635404. S2CID 4340763.
  66. ^ Rafferty, D. A.; McNamara, B. R.; Nulsen, P. E. J.; Wise, M. W. (2006). "The Feedback-regulated Growth of Black Holes and Bulges through Gas Accretion and Starbursts in Cluster Central Dominant Galaxies". The Astrophysical Journal. 652 (1): 216–231. arXiv:astro-ph/0605323. Bibcode:2006ApJ...652..216R. doi:10.1086/507672. S2CID 9481371.
  67. ^ Wernli, F.; Emsellem, E.; Copin, Y. (2002). "A 60 pc counter-rotating core in NGC 4621". Astronomy & Astrophysics. 396: 73–81. arXiv:astro-ph/0209361. Bibcode:2002A&A...396...73W. doi:10.1051/0004-6361:20021333. S2CID 18545003.
  68. ^ Okino, Hiroki; et al. (2022). "Collimation of the Relativistic Jet in the Quasar 3C 273". The Astrophysical Journal. 940: 65. arXiv:2112.12233. doi:10.3847/1538-4357/ac97e5.
  69. ^ Shirasaki, Yuji; Komiya, Yutaka; Ohishi, Masatoshi; Mizumoto, Yoshihiko (2016). "Properties of galaxies around AGNs with the most massive supermassive black holes revealed by clustering analysis". Publications of the Astronomical Society of Japan. 68 (2). arXiv:1503.08893v3. doi:10.1093/pasj/psv141.
  70. ^ Barker, S.; de Grijs, R.; Cerviño, M. (2008). "Star cluster versus field star formation in the nucleus of the prototype starburst galaxy M 82". Astronomy and Astrophysics. 484 (3): 711–720. arXiv:0804.1913. Bibcode:2008A&A...484..711B. doi:10.1051/0004-6361:200809653. S2CID 18885080.
  71. ^ Voggel, K. T.; Seth, A. C.; Baumgardt, H.; Husemann, B.; Neumayer, N.; Hilker, M.; Pechetti, R.; Mieske, S.; Dumont, A.; Georgiev, I. (2021-11-30). "First direct dynamical detection of a dual super-massive black hole system at sub-kpc separation". Astronomy & Astrophysics. 658: A152. doi:10.1051/0004-6361/202140827. ISSN 0004-6361. S2CID 244729851.
  72. ^ Al-Baidhany, Ismaeel A.; Chiad, Sami S.; Jabbar, Wasmaa A.; Al-Kadumi, Ahmed K.; Habubi, Nadir F.; Mansour, Hazim L. (2020). "Determine the mass of supermassive black hole in the centre of M31 in different methods". International Conference of Numerical Analysis and Applied Mathematics Icnaam 2019. Vol. 2293. doi:10.1063/5.0027838.
  73. ^ Neumayer, Nadine; Seth, Anil; Böker, Torsten (2020). "Nuclear star clusters". The Astronomy and Astrophysics Review. 28. arXiv:2001.03626. doi:10.1007/s00159-020-00125-0.
  74. ^ Quantised Angular Momenta of Astronomical Bodies. B. F. Riley
  75. ^ Caglar, Turgay; Burtscher, Leonard; Brandl, Bernhard; Brinchmann, Jarle; Davies, Richard I.; Hicks, Erin K. S.; Koss, Michael; Lin, Ming-Yi; MacIejewski, Witold; Müller-Sánchez, Francisco; Riffel, Rogemar A.; Riffel, Rogério; Rosario, David J.; Schartmann, Marc; Schnorr-Müller, Allan; Taro Shimizu, T.; Storchi-Bergmann, Thaisa; Veilleux, Sylvain; De Xivry, Gilles Orban; Bennert, Vardha N. (2020). "LLAMA: The M BHσ relation of the most luminous local AGNs". Astronomy & Astrophysics. 634: A114. arXiv:1912.07734. doi:10.1051/0004-6361/201936321.
  76. ^ Nemiroff, R.; Bonnell, J., eds. (2011-04-13). "Centaurus Radio Jets Rising". Astronomy Picture of the Day. NASA. Retrieved 2011-04-16.
  77. ^ a b Sun, Mouyuan; Xue, Yongquan; Cai, Zhenyi; Guo, Hengxiao (2018). "A Falling Corona Model for the Anomalous Behavior of the Broad Emission Lines in NGC 5548". The Astrophysical Journal. 857 (2): 86. arXiv:1803.06090. doi:10.3847/1538-4357/aab786.
  78. ^ Seth, Anil C.; Van Den Bosch, Remco; Mieske, Steffen; Baumgardt, Holger; Brok, Mark den; Strader, Jay; Neumayer, Nadine; Chilingarian, Igor; Hilker, Michael; McDermid, Richard; Spitler, Lee; Brodie, Jean; Frank, Matthias J.; Walsh, Jonelle L. (2014). "A supermassive black hole in an ultra-compact dwarf galaxy". Nature. 513 (7518): 398–400. arXiv:1409.4769. doi:10.1038/nature13762. PMID 25230660.
  79. ^ Wong, Thomas Hong Tsun; Pfister, Hugo; Dai, Lixin (2022). "Revisiting the Rates and Demographics of Tidal Disruption Events: Effects of the Disk Formation Efficiency". The Astrophysical Journal Letters. 927: L19. arXiv:2111.09173. doi:10.3847/2041-8213/ac5823.
  80. ^ Cite error: The named reference kom was invoked but never defined (see the help page).
  81. ^ NASA: "Giant Black Hole Rips Apart Unlucky Star"
  82. ^ Event Horizon Telescope Collaboration; et al. (2022). "First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way". The Astrophysical Journal Letters. 930 (2): L12. doi:10.3847/2041-8213/ac6674.
  83. ^ Event Horizon Telescope Collaboration; et al. (2022). "First Sagittarius A* Event Horizon Telescope Results. V. Testing Astrophysical Models of the Galactic Center Black Hole". The Astrophysical Journal Letters. 930 (2): L16. doi:10.3847/2041-8213/ac6672.
  84. ^ Cann, Jenna M.; Satyapal, Shobita; Rothberg, Barry; Canalizo, Gabriela; Bohn, Thomas; Lamassa, Stephanie; Matzko, William; Blecha, Laura; Secrest, Nathan J.; Seth, Anil; Böker, Torsten; Sexton, Remington O.; Kamal, Lara; Schmitt, Henrique (2021). "Relics of Supermassive Black Hole Seeds: The Discovery of an Accreting Black Hole in an Optically Normal, Low Metallicity Dwarf Galaxy". The Astrophysical Journal Letters. 912: L2. doi:10.3847/2041-8213/abf56d.