Circle criterion
In nonlinear control and stability theory, the circle criterion is a stability criterion for nonlinear time-varying systems. It can be viewed as a generalization of the Nyquist stability criterion for linear time-invariant (LTI) systems.
Overview
Consider a linear system subject to non-linear feedback, i.e., a nonlinear element is present in the feedback loop. Assume that the element satisfies a sector condition , and (to keep things simple) that the open loop system is stable. Then the closed loop system is globally asymptotically stable if the Nyquist locus does not penetrate the circle having as diameter the segment located on the x-axis.
General description
Consider the nonlinear system
Suppose that
- is stable
Then such that for any solution of the system, the following relation holds:
Condition 3 is also known as the frequency condition. Condition 1 is the sector condition.
External links
- Sufficient Conditions for Dynamical Output Feedback Stabilization via the Circle Criterion
- Popov and Circle Criterion (Cam UK)
- Stability analysis using the circle criterion in Mathematica
References
- Haddad, Wassim M.; Chellaboina, VijaySekhar (2011). Nonlinear Dynamical Systems and Control: a Lyapunov-Based Approach. Princeton University Press. ISBN 9781400841042.