Gene expression of CXCL11 is strongly induced by IFN-γ and IFN-β, and weakly induced by IFN-α.[6] This chemokine elicits its effects on its target cells by interacting with the cell surface chemokine receptorCXCR3, with a higher affinity than do the other ligands for this receptor, CXCL9 and CXCL10.[5][7] CXCL11 is chemotactic for activated T cells. Its gene is located on human chromosome 4 along with many other members of the CXC chemokine family.[8][9]
Biomarkers
CXCL9, -10, -11 have proven to be valid biomarkers for the development of heart failure and left ventricular dysfunction, suggesting an underlining pathophysiological relation between levels of these chemokines and the development of adverse cardiac remodeling.[10][11]
^Erdel M, Laich A, Utermann G, Werner ER, Werner-Felmayer G (1998). "The human gene encoding SCYB9B, a putative novel CXC chemokine, maps to human chromosome 4q21 like the closely related genes for MIG (SCYB9) and INP10 (SCYB10)". Cytogenetics and Cell Genetics. 81 (3–4): 271–2. doi:10.1159/000015043. PMID9730616. S2CID46846304.
^O'Donovan N, Galvin M, Morgan JG (1999). "Physical mapping of the CXC chemokine locus on human chromosome 4". Cytogenetics and Cell Genetics. 84 (1–2): 39–42. doi:10.1159/000015209. PMID10343098. S2CID8087808.
Erdel M, Laich A, Utermann G, Werner ER, Werner-Felmayer G (1998). "The human gene encoding SCYB9B, a putative novel CXC chemokine, maps to human chromosome 4q21 like the closely related genes for MIG (SCYB9) and INP10 (SCYB10)". Cytogenetics and Cell Genetics. 81 (3–4): 271–2. doi:10.1159/000015043. PMID9730616. S2CID46846304.
Luo Y, Kim R, Gabuzda D, Mi S, Collins-Racie LA, Lu Z, Jacobs KA, Dorf ME (December 1998). "The CXC-chemokine, H174: expression in the central nervous system". Journal of Neurovirology. 4 (6): 575–85. doi:10.3109/13550289809114224. PMID10065899.
Laich A, Meyer M, Werner ER, Werner-Felmayer G (May 1999). "Structure and expression of the human small cytokine B subfamily member 11 (SCYB11/formerly SCYB9B, alias I-TAC) gene cloned from IFN-gamma-treated human monocytes (THP-1)". Journal of Interferon & Cytokine Research. 19 (5): 505–13. doi:10.1089/107999099313956. PMID10386863.
Tensen CP, Flier J, Rampersad SS, Sampat-Sardjoepersad S, Scheper RJ, Boorsma DM, Willemze R (July 1999). "Genomic organization, sequence and transcriptional regulation of the human CXCL 11(1) gene". Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression. 1446 (1–2): 167–72. doi:10.1016/s0167-4781(99)00084-6. PMID10395932.
Hensbergen PJ, van der Raaij-Helmer EM, Dijkman R, van der Schors RC, Werner-Felmayer G, Boorsma DM, Scheper RJ, Willemze R, Tensen CP (September 2001). "Processing of natural and recombinant CXCR3-targeting chemokines and implications for biological activity". European Journal of Biochemistry. 268 (18): 4992–9. doi:10.1046/j.0014-2956.2001.02433.x. PMID11559369.
Basu S, Schaefer TM, Ghosh M, Fuller CL, Reinhart TA (May 2002). "Molecular cloning and sequencing of 25 different rhesus macaque chemokine cDNAs reveals evolutionary conservation among C, CC, CXC, AND CX3C families of chemokines". Cytokine. 18 (3): 140–8. doi:10.1006/cyto.2002.0875. PMID12126650.
Salmaggi A, Gelati M, Dufour A, Corsini E, Pagano S, Baccalini R, Ferrero E, Scabini S, Silei V, Ciusani E, De Rossi M (June 2002). "Expression and modulation of IFN-gamma-inducible chemokines (IP-10, Mig, and I-TAC) in human brain endothelium and astrocytes: possible relevance for the immune invasion of the central nervous system and the pathogenesis of multiple sclerosis". Journal of Interferon & Cytokine Research. 22 (6): 631–40. doi:10.1089/10799900260100114. PMID12162873.
Xanthou G, Duchesnes CE, Williams TJ, Pease JE (August 2003). "CCR3 functional responses are regulated by both CXCR3 and its ligands CXCL9, CXCL10 and CXCL11". European Journal of Immunology. 33 (8): 2241–50. doi:10.1002/eji.200323787. PMID12884299. S2CID24555816.