CD-44 170
Observation data Epoch J2000 Equinox J2000 | |
---|---|
Constellation | Phoenix |
Right ascension | 00h 39m 58.8243s[1] |
Declination | −44° 15′ 11.5824″[1] |
Apparent magnitude (V) | 11.401 |
Characteristics | |
Evolutionary stage | main-sequence star |
Spectral type | M0.5V[2] |
Astrometry | |
Radial velocity (Rv) | 11.85±0.19[3] km/s |
Proper motion (μ) | RA: 483.002[3] mas/yr Dec.: −221.111[3] mas/yr |
Parallax (π) | 42.3320 ± 0.0248 mas[3] |
Distance | 77.05 ± 0.05 ly (23.62 ± 0.01 pc) |
Details | |
Mass | 0.53[2] M☉ |
Radius | 0.52[4] R☉ |
Luminosity | 0.04597±0.00087[5] L☉ |
Temperature | 3604±72[6] K |
Metallicity [Fe/H] | −0.09±0.09[6] dex |
Rotation | 31.8 d[2] |
Other designations | |
Database references | |
SIMBAD | data |
CD-44 170, also known as Gliese 27.1, Gliese 9018 and HIP 3143, is an M-type main-sequence star. Its surface temperature is 3,604 K (6,028 °F; 3,331 °C)±72 K. The star's concentration of heavy elements is similar to that of the Sun.[6]
Planetary system
In 2014, a planet named Gliese 27.1 b with an orbital period of 16 days was announced. It was discovered using the radial velocity method.[7] The planetary equilibrium temperature is 406 K (271 °F; 133 °C).[5] The planet's existence was doubted until 2020 because the putative orbital period is equal to half of the star's rotational period.[2]
Companion (in order from star) |
Mass | Semimajor axis (AU) |
Orbital period (days) |
Eccentricity | Inclination | Radius |
---|---|---|---|---|---|---|
b (disputed) | > 13+4.1 −6.6 M🜨 |
0.101+0.009 −0.013 |
15.8190+0.0049 −0.0026 |
— | — | >3.63 R🜨 |
References
- ^ a b c "CD-44 170". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 2021-04-26.
- ^ a b c d Feng, Fabo; Butler, R. Paul; Shectman, Stephen A.; Crane, Jeffrey D.; Vogt, Steve; Chambers, John; Jones, Hugh R. A.; Wang, Sharon Xuesong; Teske, Johanna K.; Burt, Jenn; Díaz, Matías R.; Thompson, Ian B. (2020). "Search for Nearby Earth Analogs. II. Detection of Five New Planets, Eight Planet Candidates, and Confirmation of Three Planets around Nine Nearby M Dwarfs". The Astrophysical Journal Supplement Series. 246 (1): 11. arXiv:2001.02577. Bibcode:2020ApJS..246...11F. doi:10.3847/1538-4365/ab5e7c. S2CID 210064560.
- ^ a b c d Brown, A. G. A.; et al. (Gaia collaboration) (2021). "Gaia Early Data Release 3: Summary of the contents and survey properties". Astronomy & Astrophysics. 649: A1. arXiv:2012.01533. Bibcode:2021A&A...649A...1G. doi:10.1051/0004-6361/202039657. S2CID 227254300. (Erratum: doi:10.1051/0004-6361/202039657e). Gaia EDR3 record for this source at VizieR.
- ^ Newton, Elisabeth R.; Irwin, Jonathan; Charbonneau, David; Berta-Thompson, Zachory K.; Dittmann, Jason A. (2016). "The Impact of Stellar Rotation on the Detectability of Habitable Planets Around M Dwarfs". The Astrophysical Journal. 821 (1): L19. arXiv:1604.03135. Bibcode:2016ApJ...821L..19N. doi:10.3847/2041-8205/821/1/L19. S2CID 73538034.
- ^ a b c Martínez-Rodríguez, Héctor; Caballero, José Antonio; Cifuentes, Carlos; Piro, Anthony L.; Barnes, Rory (2019). "Exomoons in the Habitable Zones of M Dwarfs". The Astrophysical Journal. 887 (2): 261. arXiv:1910.12054. Bibcode:2019ApJ...887..261M. doi:10.3847/1538-4357/ab5640. S2CID 204904780.
- ^ a b c Kuznetsov, M. K.; Del Burgo, C.; Pavlenko, Ya. V.; Frith, J. (2019). "Characterization of a Sample of Southern M Dwarfs Using Harps and X-shooter Spectra". The Astrophysical Journal. 878 (2): 134. Bibcode:2019ApJ...878..134K. doi:10.3847/1538-4357/ab1fe9.
- ^ Tuomi, Mikko; Jones, Hugh R. A.; Barnes, John R.; Anglada-Escudé, Guillem; Jenkins, James S. (2014). "Bayesian search for low-mass planets around nearby M dwarfs – estimates for occurrence rate based on global detectability statistics". Monthly Notices of the Royal Astronomical Society. 441 (2): 1545–1569. arXiv:1403.0430. Bibcode:2014MNRAS.441.1545T. doi:10.1093/mnras/stu358.