Langbahn Team – Weltmeisterschaft

Truncated tesseractic honeycomb

Truncated tesseractic honeycomb
(No image)
Type Uniform 4-honeycomb
Schläfli symbol t{4,3,3,4}
t{4,3,31,1}
Coxeter-Dynkin diagram
4-face type truncated tesseract
16-cell
Cell type Truncated cube
Tetrahedron
Face type {3}, {8}
Vertex figure octahedral pyramid
Coxeter group = [4,3,3,4]
= [4,3,31,1]
Dual
Properties vertex-transitive

In four-dimensional Euclidean geometry, the truncated tesseractic honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 4-space. It is constructed by a truncation of a tesseractic honeycomb creating truncated tesseracts, and adding new 16-cell facets at the original vertices.

The [4,3,3,4], , Coxeter group generates 31 permutations of uniform tessellations, 21 with distinct symmetry and 20 with distinct geometry. The expanded tesseractic honeycomb (also known as the stericated tesseractic honeycomb) is geometrically identical to the tesseractic honeycomb. Three of the symmetric honeycombs are shared in the [3,4,3,3] family. Two alternations (13) and (17), and the quarter tesseractic (2) are repeated in other families.

C4 honeycombs
Extended
symmetry
Extended
diagram
Order Honeycombs
[4,3,3,4]: ×1

1, 2, 3, 4,
5, 6, 7, 8,
9, 10, 11, 12,
13

[[4,3,3,4]] ×2 (1), (2), (13), 18
(6), 19, 20
[(3,3)[1+,4,3,3,4,1+]]
↔ [(3,3)[31,1,1,1]]
↔ [3,4,3,3]


×6

14, 15, 16, 17

See also

Regular and uniform honeycombs in 4-space:

Notes

References

  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45] See p318 [2]
  • George Olshevsky, Uniform Panoploid Tetracombs, Manuscript (2006) (Complete list of 11 convex uniform tilings, 28 convex uniform honeycombs, and 143 convex uniform tetracombs)
  • Klitzing, Richard. "4D Euclidean tesselations#4D". o3o3o *b3x4x, x4x3o3o4o - tattit - O89
  • Conway JH, Sloane NJH (1998). Sphere Packings, Lattices and Groups (3rd ed.). Springer. ISBN 0-387-98585-9.
Space Family / /
E2 Uniform tiling 0[3] δ3 3 3 Hexagonal
E3 Uniform convex honeycomb 0[4] δ4 4 4
E4 Uniform 4-honeycomb 0[5] δ5 5 5 24-cell honeycomb
E5 Uniform 5-honeycomb 0[6] δ6 6 6
E6 Uniform 6-honeycomb 0[7] δ7 7 7 222
E7 Uniform 7-honeycomb 0[8] δ8 8 8 133331
E8 Uniform 8-honeycomb 0[9] δ9 9 9 152251521
E9 Uniform 9-honeycomb 0[10] δ10 10 10
E10 Uniform 10-honeycomb 0[11] δ11 11 11
En-1 Uniform (n-1)-honeycomb 0[n] δn n n 1k22k1k21