Table of vertex-symmetric digraphs
The best known vertex transitive digraphs (as of October 2008) in the directed Degree diameter problem are tabulated below.
Table of the orders of the largest known vertex-symmetric graphs for the directed degree diameter problem
k d |
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
---|---|---|---|---|---|---|---|---|---|---|
2 | 6[g 1] | 10[g 2] | 20[g 3] | 27[g 3] | 72[g 4] | 144[g 4] | 171[g 2] | 336[g 5] | 504[g 5] | 737[g 2] |
3 | 12[g 1] | 27[g 3] | 60[g 6] | 165[g 7] | 333[g 2] | 1 152[g 8] | 2 041[g 9] | 5 115[g 9] | 11 568[g 9] | 41 472[g 8] |
4 | 20[g 1] | 60[g 5] | 168[g 4] | 465[g 9] | 1 378[g 9] | 7 200[g 8] | 14 400[g 10] | 42 309[g 9] | 137 370[g 9] | 648 000[g 8] |
5 | 30[g 1] | 120[g 5] | 360[g 5] | 1 152[g 8] | 3 775[g 9] | 28 800[g 8] | 86 400[g 10] | 259 200[g 8] | 1 010 658[g 9] | 5 184 000[g 8] |
6 | 42[g 1] | 210[g 5] | 840[g 5] | 2 520[g 5] | 9 020[g 9] | 88 200[g 8] | 352 800[g 10] | 1 411 200[g 8] | 5 184 000[g 8] | 27 783 000[g 8] |
7 | 56[g 1] | 336[g 5] | 1 680[g 5] | 6 720[g 5] | 20 160[g 5] | 225 792[g 8] | 1 128 960[g 10] | 5 644 800[g 8] | 27 783 000[g 8] | 113 799 168[g 8] |
8 | 72[g 1] | 504[g 5] | 3 024[g 5] | 15 120[g 5] | 60 480[g 5] | 508 032[g 8] | 3 048 192[g 10] | 18 289 152[g 8] | 113 799 168[g 8] | 457 228 800[g 8] |
9 | 90[g 1] | 720[g 5] | 5 040[g 5] | 30 240[g 5] | 151 200[g 5] | 1 036 800[g 8] | 7 257 600[g 10] | 50 803 200[g 8] | 384 072 192[g 8] | 1 828 915 200[g 8] |
10 | 110[g 1] | 990[g 5] | 7 920[g 5] | 55 400[g 5] | 332 640[g 5] | 1 960 200[g 8] | 15 681 600[g 10] | 125 452 800[g 8] | 1 119 744 000[g 8] | 6 138 320 000[g 8] |
11 | 132[g 1] | 1 320[g 5] | 11 880[g 5] | 95 040[g 5] | 665 280[g 5] | 3 991 680[g 5] | 31 152 000[g 10] | 282 268 800[g 8] | 2 910 897 000[g 8] | 18 065 203 200[g 8] |
12 | 156[g 1] | 1 716[g 5] | 17 160[g 5] | 154 440[g 5] | 1 235 520[g 5] | 8 648 640[g 5] | 58 893 120[g 10] | 588 931 200[g 8] | 6 899 904 000[g 8] | 47 703 427 200[g 8] |
13 | 182[g 1] | 2 184[g 5] | 24 024[g 5] | 240 240[g 5] | 2 162 160[g 5] | 17 297 280[g 5] | 121 080 960[g 5] | 1 154 305 152[g 8] | 15 159 089 098[g 8] | 115 430 515 200[g 8] |
The footnotes in the table indicate the origin of the digraph that achieves the given number of vertices:
- ^ a b c d e f g h i j k l Family of digraphs found by Kautz (1969).
- ^ a b c d Cayley digraphs found by Michael J. Dinneen. Details about these graphs are available in a paper by the author.
- ^ a b c Cayley digraphs found by Michael J. Dinneen. The complete set of Cayley digraphs in that order was found by Eyal Loz.
- ^ a b c Cayley digraphs found by Paul Hafner. Details about these graphs are available in a paper by the author.
- ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an Family of digraphs found by Faber & Moore (1988).
- ^ Digraph found by Faber & Moore (1988). The complete set of Cayley digraphs in that order was found by Eyal Loz.
- ^ Cayley digraph found by Paul Hafner. The complete set of Cayley digraphs in that order was found by Eyal Loz.
- ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak Digraphs found by Comellas & Fiol (1995).
- ^ a b c d e f g h i j Cayley digraphs found by Eyal Loz. More details are available in Loz & Širáň (2008).
- ^ a b c d e f g h i Digraphs found by J. Gómez.
References
- Kautz, W.H. (1969), "Design of optimal interconnection networks for multiprocessors", Architecture and Design of Digital Computers, Nato Advanced Summer Institute: 249–272
- Faber, V.; Moore, J.W. (1988), "High-degree low-diameter interconnection networks with vertex symmetry:the directed case", Technical Report LA-UR-88-1051, los Alamos National Laboratory
- J. Dinneen, Michael; Hafner, Paul R. (1994), "New Results for the Degree/Diameter Problem", Networks, 24 (7): 359–367, arXiv:math/9504214, doi:10.1002/net.3230240702
- Comellas, F.; Fiol, M.A. (1995), "Vertex-symmetric digraphs with small diameter", Discrete Applied Mathematics, 58 (1): 1–12, doi:10.1016/0166-218X(93)E0145-O
- Miller, Mirka; Širáň, Jozef (2005), "Moore graphs and beyond: A survey of the degree/diameter problem" (PDF), Electronic Journal of Combinatorics, Dynamic, survey D
- Loz, Eyal; Širáň, Jozef (2008), "New record graphs in the degree-diameter problem" (PDF), Australasian Journal of Combinatorics, 41: 63–80
External links
- Vertex-symmetric Digraphs online table.
- The Degree - Diameter Problem on CombinatoricsWiki.org.
- Eyal Loz's Degree-Diameter problem page.