Solar eclipse of December 6, 2086
Solar eclipse of December 6, 2086 | |
---|---|
Type of eclipse | |
Nature | Partial |
Gamma | 1.0194 |
Magnitude | 0.9271 |
Maximum eclipse | |
Coordinates | 67°24′N 96°12′E / 67.4°N 96.2°E |
Times (UTC) | |
Greatest eclipse | 5:38:55 |
References | |
Saros | 153 (13 of 70) |
Catalog # (SE5000) | 9702 |
A partial solar eclipse will occur at the Moon's ascending node of orbit on Friday, December 6, 2086,[1] with a magnitude of 0.9271. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
The partial solar eclipse will be visible for much of Asia.
Eclipse details
Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[2]
Event | Time (UTC) |
---|---|
First Penumbral External Contact | 2086 December 06 at 03:21:35.8 UTC |
Equatorial Conjunction | 2086 December 06 at 05:36:56.3 UTC |
Greatest Eclipse | 2086 December 06 at 05:38:55.4 UTC |
Ecliptic Conjunction | 2086 December 06 at 05:50:30.7 UTC |
Last Penumbral External Contact | 2086 December 06 at 07:56:10.8 UTC |
Parameter | Value |
---|---|
Eclipse Magnitude | 0.92711 |
Eclipse Obscuration | 0.86398 |
Gamma | 1.01940 |
Sun Right Ascension | 16h52m56.6s |
Sun Declination | -22°31'57.0" |
Sun Semi-Diameter | 16'13.7" |
Sun Equatorial Horizontal Parallax | 08.9" |
Moon Right Ascension | 16h53m00.7s |
Moon Declination | -21°35'36.6" |
Moon Semi-Diameter | 15'06.1" |
Moon Equatorial Horizontal Parallax | 0°55'25.4" |
ΔT | 111.4 s |
Eclipse season
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
November 20 Descending node (full moon) |
December 6 Ascending node (new moon) |
---|---|
Partial lunar eclipse Lunar Saros 127 |
Partial solar eclipse Solar Saros 153 |
Related eclipses
Eclipses in 2086
- A partial lunar eclipse on May 28.
- A total solar eclipse on June 11.
- A partial lunar eclipse on November 20.
- A partial solar eclipse on December 6.
Metonic
- Preceded by: Solar eclipse of February 16, 2083
- Followed by: Solar eclipse of September 23, 2090
Tzolkinex
- Preceded by: Solar eclipse of October 24, 2079
- Followed by: Solar eclipse of January 16, 2094
Half-Saros
- Preceded by: Lunar eclipse of November 29, 2077
- Followed by: Lunar eclipse of December 11, 2095
Tritos
- Preceded by: Solar eclipse of January 6, 2076
- Followed by: Solar eclipse of November 4, 2097
Solar Saros 153
- Preceded by: Solar eclipse of November 24, 2068
- Followed by: Solar eclipse of December 17, 2104
Inex
- Preceded by: Solar eclipse of December 26, 2057
- Followed by: Solar eclipse of November 16, 2115
Triad
- Preceded by: Solar eclipse of February 5, 2000
- Followed by: Solar eclipse of October 7, 2173
Solar eclipses of 2083–2087
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[3]
The partial solar eclipses on February 16, 2083 and August 13, 2083 occur in the previous lunar year eclipse set, and the partial solar eclipses on May 2, 2087 and October 26, 2087 occur in the next lunar year eclipse set.
Solar eclipse series sets from 2083 to 2087 | ||||||
---|---|---|---|---|---|---|
Descending node | Ascending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
118 | July 15, 2083 Partial |
1.5465 | 123 | January 7, 2084 Partial |
−1.0715 | |
128 | July 3, 2084 Annular |
0.8208 | 133 | December 27, 2084 Total |
−0.4094 | |
138 | June 22, 2085 Annular |
0.0452 | 143 | December 16, 2085 Annular |
0.2786 | |
148 | June 11, 2086 Total |
−0.7215 | 153 | December 6, 2086 Partial |
1.0194 | |
158 | June 1, 2087 Partial |
−1.4186 |
Saros 153
This eclipse is a part of Saros series 153, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on July 28, 1870. It contains annular eclipses from December 17, 2104 through May 26, 2970. There are no hybrid or total eclipses in this set. The series ends at member 70 as a partial eclipse on August 22, 3114. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of annularity will be produced by member 38 at 7 minutes, 1 seconds on September 5, 2537. All eclipses in this series occur at the Moon’s ascending node of orbit.[4]
Series members 1–19 occur between 1870 and 2200: | ||
---|---|---|
1 | 2 | 3 |
July 28, 1870 |
August 7, 1888 |
August 20, 1906 |
4 | 5 | 6 |
August 30, 1924 |
September 10, 1942 |
September 20, 1960 |
7 | 8 | 9 |
October 2, 1978 |
October 12, 1996 |
October 23, 2014 |
10 | 11 | 12 |
November 3, 2032 |
November 14, 2050 |
November 24, 2068 |
13 | 14 | 15 |
December 6, 2086 |
December 17, 2104 |
December 28, 2122 |
16 | 17 | 18 |
January 8, 2141 |
January 19, 2159 |
January 29, 2177 |
19 | ||
February 10, 2195 |
Metonic series
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.
21 eclipse events between July 13, 2018 and July 12, 2094 | ||||
---|---|---|---|---|
July 12–13 | April 30–May 1 | February 16–17 | December 5–6 | September 22–23 |
117 | 119 | 121 | 123 | 125 |
July 13, 2018 |
April 30, 2022 |
February 17, 2026 |
December 5, 2029 |
September 23, 2033 |
127 | 129 | 131 | 133 | 135 |
July 13, 2037 |
April 30, 2041 |
February 16, 2045 |
December 5, 2048 |
September 22, 2052 |
137 | 139 | 141 | 143 | 145 |
July 12, 2056 |
April 30, 2060 |
February 17, 2064 |
December 6, 2067 |
September 23, 2071 |
147 | 149 | 151 | 153 | 155 |
July 13, 2075 |
May 1, 2079 |
February 16, 2083 |
December 6, 2086 |
September 23, 2090 |
157 | ||||
July 12, 2094 |
Tritos series
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||||
---|---|---|---|---|
February 21, 1803 (Saros 127) |
January 21, 1814 (Saros 128) |
December 20, 1824 (Saros 129) |
November 20, 1835 (Saros 130) |
October 20, 1846 (Saros 131) |
September 18, 1857 (Saros 132) |
August 18, 1868 (Saros 133) |
July 19, 1879 (Saros 134) |
June 17, 1890 (Saros 135) |
May 18, 1901 (Saros 136) |
April 17, 1912 (Saros 137) |
March 17, 1923 (Saros 138) |
February 14, 1934 (Saros 139) |
January 14, 1945 (Saros 140) |
December 14, 1955 (Saros 141) |
November 12, 1966 (Saros 142) |
October 12, 1977 (Saros 143) |
September 11, 1988 (Saros 144) |
August 11, 1999 (Saros 145) |
July 11, 2010 (Saros 146) |
June 10, 2021 (Saros 147) |
May 9, 2032 (Saros 148) |
April 9, 2043 (Saros 149) |
March 9, 2054 (Saros 150) |
February 5, 2065 (Saros 151) |
January 6, 2076 (Saros 152) |
December 6, 2086 (Saros 153) |
November 4, 2097 (Saros 154) |
October 5, 2108 (Saros 155) |
September 5, 2119 (Saros 156) |
August 4, 2130 (Saros 157) |
July 3, 2141 (Saros 158) |
June 3, 2152 (Saros 159) |
April 1, 2174 (Saros 161) |
Inex series
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||
---|---|---|
June 5, 1826 (Saros 144) |
May 16, 1855 (Saros 145) |
April 25, 1884 (Saros 146) |
April 6, 1913 (Saros 147) |
March 16, 1942 (Saros 148) |
February 25, 1971 (Saros 149) |
February 5, 2000 (Saros 150) |
January 14, 2029 (Saros 151) |
December 26, 2057 (Saros 152) |
December 6, 2086 (Saros 153) |
November 16, 2115 (Saros 154) |
October 26, 2144 (Saros 155) |
October 7, 2173 (Saros 156) |
References
- ^ "December 6, 2086 Partial Solar Eclipse". timeanddate. Retrieved 24 August 2024.
- ^ "Partial Solar Eclipse of 2086 Dec 06". EclipseWise.com. Retrieved 24 August 2024.
- ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
- ^ "NASA - Catalog of Solar Eclipses of Saros 153". eclipse.gsfc.nasa.gov.
External links
- Earth visibility chart and eclipse statistics Eclipse Predictions by Fred Espenak, NASA/GSFC