Langbahn Team – Weltmeisterschaft

Solar eclipse of August 31, 1970

Solar eclipse of August 31, 1970
Map
Type of eclipse
NatureAnnular
Gamma−0.5364
Magnitude0.94
Maximum eclipse
Duration407 s (6 min 47 s)
Coordinates20°18′S 164°00′W / 20.3°S 164°W / -20.3; -164
Max. width of band258 km (160 mi)
Times (UTC)
Greatest eclipse21:55:30
References
Saros144 (14 of 70)
Catalog # (SE5000)9443

An annular solar eclipse occurred at the Moon's descending node of orbit between Monday, August 31 and Tuesday, September 1, 1970,[1] with a magnitude of 0.94. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 20 hours after apogee (on August 31, 1970, at 2:00 UTC), the Moon's apparent diameter was smaller.[2]

Annularity was visible from the Territory of Papua and New Guinea (today's Papua New Guinea), Gilbert and Ellice Islands (the part that belongs to Tuvalu now) on September 1 (Tuesday), West Samoa (name changed to Samoa later) and the whole American Samoa except Swains Island on August 31 (Monday). A partial eclipse was visible for parts of Eastern Australia, Oceania, and Antarctica.

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[3]

August 31, 1970 Solar Eclipse Times
Event Time (UTC)
First Penumbral External Contact 1970 August 31 at 19:00:38.3 UTC
First Umbral External Contact 1970 August 31 at 20:12:19.4 UTC
First Central Line 1970 August 31 at 20:15:18.7 UTC
First Umbral Internal Contact 1970 August 31 at 20:18:19.6 UTC
Greatest Duration 1970 August 31 at 21:42:42.2 UTC
Greatest Eclipse 1970 August 31 at 21:55:29.9 UTC
Ecliptic Conjunction 1970 August 31 at 22:01:53.6 UTC
Equatorial Conjunction 1970 August 31 at 22:28:51.4 UTC
Last Umbral Internal Contact 1970 August 31 at 23:32:19.4 UTC
Last Central Line 1970 August 31 at 23:35:20.4 UTC
Last Umbral External Contact 1970 August 31 at 23:38:19.7 UTC
Last Penumbral External Contact 1970 September 1 at 00:50:07.5 UTC
August 31, 1970 Solar Eclipse Parameters
Parameter Value
Eclipse Magnitude 0.93997
Eclipse Obscuration 0.88354
Gamma −0.53640
Sun Right Ascension 10h38m53.2s
Sun Declination +08°32'52.7"
Sun Semi-Diameter 15'50.8"
Sun Equatorial Horizontal Parallax 08.7"
Moon Right Ascension 10h37m59.0s
Moon Declination +08°07'17.6"
Moon Semi-Diameter 14'42.6"
Moon Equatorial Horizontal Parallax 0°53'59.0"
ΔT 40.8 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of August 1970
August 17
Ascending node (full moon)
August 31
Descending node (new moon)
Partial lunar eclipse
Lunar Saros 118
Annular solar eclipse
Solar Saros 144

Eclipses in 1970

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 144

Inex

Triad

Solar eclipses of 1968–1971

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[4]

The partial solar eclipse on July 22, 1971 occurs in the next lunar year eclipse set.

Solar eclipse series sets from 1968 to 1971
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
119 March 28, 1968

Partial
−1.037 124 September 22, 1968

Total
0.9451
129 March 18, 1969

Annular
−0.2704 134 September 11, 1969

Annular
0.2201
139

Totality in Williamston, NC
USA
March 7, 1970

Total
0.4473 144 August 31, 1970

Annular
−0.5364
149 February 25, 1971

Partial
1.1188 154 August 20, 1971

Partial
−1.2659

Saros 144

This eclipse is a part of Saros series 144, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on April 11, 1736. It contains annular eclipses from July 7, 1880 through August 27, 2565. There are no hybrid or total eclipses in this set. The series ends at member 70 as a partial eclipse on May 5, 2980. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity will be produced by member 51 at 9 minutes, 52 seconds on December 29, 2168. All eclipses in this series occur at the Moon’s descending node of orbit.[5]

Series members 5–26 occur between 1801 and 2200:
5 6 7

May 25, 1808

June 5, 1826

June 16, 1844
8 9 10

June 27, 1862

July 7, 1880

July 18, 1898
11 12 13

July 30, 1916

August 10, 1934

August 20, 1952
14 15 16

August 31, 1970

September 11, 1988

September 22, 2006
17 18 19

October 2, 2024

October 14, 2042

October 24, 2060
20 21 22

November 4, 2078

November 15, 2096

November 27, 2114
23 24 25

December 7, 2132

December 19, 2150

December 29, 2168
26

January 9, 2187

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between April 8, 1902 and August 31, 1989
April 7–8 January 24–25 November 12 August 31–September 1 June 19–20
108 110 112 114 116

April 8, 1902

August 31, 1913

June 19, 1917
118 120 122 124 126

April 8, 1921

January 24, 1925

November 12, 1928

August 31, 1932

June 19, 1936
128 130 132 134 136

April 7, 1940

January 25, 1944

November 12, 1947

September 1, 1951

June 20, 1955
138 140 142 144 146

April 8, 1959

January 25, 1963

November 12, 1966

August 31, 1970

June 20, 1974
148 150 152 154

April 7, 1978

January 25, 1982

November 12, 1985

August 31, 1989

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

The partial solar eclipses on December 18, 2188 (part of Saros 164) and November 18, 2199 (part of Saros 165) are also a part of this series but are not included in the table below.

Series members between 1801 and 2134

December 10, 1806
(Saros 129)

November 9, 1817
(Saros 130)

October 9, 1828
(Saros 131)

September 7, 1839
(Saros 132)

August 7, 1850
(Saros 133)

July 8, 1861
(Saros 134)

June 6, 1872
(Saros 135)

May 6, 1883
(Saros 136)

April 6, 1894
(Saros 137)

March 6, 1905
(Saros 138)

February 3, 1916
(Saros 139)

January 3, 1927
(Saros 140)

December 2, 1937
(Saros 141)

November 1, 1948
(Saros 142)

October 2, 1959
(Saros 143)

August 31, 1970
(Saros 144)

July 31, 1981
(Saros 145)

June 30, 1992
(Saros 146)

May 31, 2003
(Saros 147)

April 29, 2014
(Saros 148)

March 29, 2025
(Saros 149)

February 27, 2036
(Saros 150)

January 26, 2047
(Saros 151)

December 26, 2057
(Saros 152)

November 24, 2068
(Saros 153)

October 24, 2079
(Saros 154)

September 23, 2090
(Saros 155)

August 24, 2101
(Saros 156)

July 23, 2112
(Saros 157)

June 23, 2123
(Saros 158)

May 23, 2134
(Saros 159)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200

December 9, 1825
(Saros 139)

November 20, 1854
(Saros 140)

October 30, 1883
(Saros 141)

October 10, 1912
(Saros 142)

September 21, 1941
(Saros 143)

August 31, 1970
(Saros 144)

August 11, 1999
(Saros 145)

July 22, 2028
(Saros 146)

July 1, 2057
(Saros 147)

June 11, 2086
(Saros 148)

May 24, 2115
(Saros 149)

May 3, 2144
(Saros 150)

April 12, 2173
(Saros 151)

Notes

  1. ^ "August 31–September 1, 1970 Annular Solar Eclipse". timeanddate. Retrieved 8 August 2024.
  2. ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 8 August 2024.
  3. ^ "Annular Solar Eclipse of 1970 Aug 31". EclipseWise.com. Retrieved 8 August 2024.
  4. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  5. ^ "NASA - Catalog of Solar Eclipses of Saros 144". eclipse.gsfc.nasa.gov.

References