Langbahn Team – Weltmeisterschaft

Parmeliaceae

Parmeliaceae
Parmelia saxatilis
Parmelia saxatilis
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Fungi
Division: Ascomycota
Class: Lecanoromycetes
Order: Lecanorales
Family: Parmeliaceae
Zenker (1827)
Type genus
Parmelia
Ach. (1803)
Genera[1]

See text

The Parmeliaceae is a large and diverse family of Lecanoromycetes. With over 2700 species[2] in 71 genera, it is the largest family of lichen-forming fungi. The most speciose genera in the family are the well-known groups: Xanthoparmelia (822 species), Usnea (355 species), Parmotrema (255 species), and Hypotrachyna (262 species).[3]

Nearly all members of the family have a symbiotic association with a green alga (most often Trebouxia spp., but Asterochloris spp. are known to associate with some species).[4] The majority of Parmeliaceae species have a foliose, fruticose, or subfruticose growth form. The morphological diversity and complexity exhibited by this group is enormous, and many specimens are exceedingly difficult to identify down to the species level.

The family has a cosmopolitan distribution, and is present in a wide range of habitats and climatic regions.[5] This includes everywhere from roadside pavement to alpine rocks, from tropical rainforest trees to subshrubs in the Arctic tundra. Members of the Parmeliaceae are found in most terrestrial environments. Several Parmeliaceae species have been assessed for the global IUCN Red List.

Taxonomy

Based on several molecular phylogenetic studies, the Parmeliaceae as currently circumscribed has been shown to be a monophyletic group.[6] This circumscription is inclusive of the previously described families Alectoriaceae, Anziaceae, Hypogymniaceae, and Usneaceae, which are all no longer recognised by most lichen systematists. However, despite the family being one of the most thoroughly studied groups of lichens, several relationships within the family still remain unclear. Phylogenetic analysis supports the existence of seven distinct clades in the family. The Parmelioid clade is the largest, containing 27 genera and about 1850 species – about two-thirds of the species in the family.[7][8]

  • Alectorioid clade (5 genera)
  • Cetrarioid clade (17 genera)
  • Hypogymnioid clade (4 genera)
  • Letharioid clade (2 genera)
  • Parmelioid clade (27 genera)
  • Psiloparmelioid clade (2 genera)
  • Usneoid clade (1 genus)

Many Parmeliaceae genera do not group phylogenetically into any of these clades, and these, along with genera that have not yet had their DNA studied, are classed as "genera with uncertain affinities".[7]

The Parmeliaceae has been divided into two subfamilies, Protoparmelioideae and Parmelioideae.[9][10] The diversification of various Parmelioideae lineages may have been a result of gaining innovations that provided adaptive advantages, such as melanin production in the genus Melanohalea.[11] Diversification of the Protoparmelioideae occurred during the Miocene.[12] The Parmelioid clade is the largest in the Parmeliaceae, with more than 1800 species and a centre of distribution in the Southern Hemisphere.[13]

Generic classification

The classification history of Parmeliaceae reflects evolving approaches to fungal taxonomy over two centuries. When Erik Acharius first described Parmelia in 1803, it encompassed a broad range of foliose lichens with rounded apothecia. By the mid-1800s, researchers began segregating genera based on ascospore characteristics, leading to the recognition of distinct groups like Physcia and Xanthoria. The most dramatic period of generic splitting occurred in the 1970s and 1980s, when Mason Hale and others proposed numerous new genera based primarily on morphological features such as lobe shapes, rhizine types, and cortical chemistry.[14]

The advent of molecular phylogenetics techniques in the late 1990s provided new tools for evaluating which morphological and chemical characters were most reliable for defining genera. These studies led to significant refinements in generic concepts, supporting some previously proposed splits while showing others to be artificial. For example, molecular data revealed that the brown-fruited genus Neofuscelia needed to be merged into Xanthoparmelia, while confirming that groups like Parmotrema and Cetrelia represented distinct evolutionary lineages.[14]

Current understanding of generic relationships in Parmeliaceae emphasises the importance of reproductive characters over vegetative features. Characters of the ascomata (especially exciple anatomy and ascospore characteristics), conidial types, and cell wall polysaccharides have proven particularly valuable for defining natural groups. In contrast, some previously emphasised features such as thallus growth form and the presence of specific cortical substances have been shown to be more variable within lineages than previously thought.[14]

Modern molecular studies have established that approximately 75% of Parmeliaceae species belong to well-defined major clades, including groups like Xanthoparmelia, Parmotrema, and their close relatives. The relationships among the remaining genera continue to be refined through ongoing research. Rather than being defined by single diagnostic features, most genera are now recognised as monophyletic groups characterised by unique combinations of multiple morphological, chemical, and anatomical traits.[14]

Evolutionary history

Although fossil records of extant lichen species are scarce, the existence of some amber inclusions has allowed for a rough estimate of the divergence of the Parmeliaceae from its most recent common ancestor. An Anzia inclusion from 35–40 Myr-old Baltic amber and Parmelia from 15–45 Myr-old Dominican amber suggest a minimum age estimate for the Parmeliaceae of about 40 Myr.[15][16] A fossil-calibrated phylogeny has estimated the Parmeliaceae to have diversified much earlier, around the Cretaceous–Paleogene boundary, 58–74 Myr ago.[17]

Characteristics

Thallus

Parmeliaceae thalli are most often foliose, fruticose or subfruticose, but can be umblicate, peltate, caespitose, crustose, or subcrustose. Two genera, Nesolechia and Raesaenenia, contain lichenicolous fungi. They can be a variety of colours, from whitish to grey, green to yellow, or brown to blackish (or any combination therein). Many genera are lobe forming, and nearly all are heteromerous (which are corticate on both sides). Species are usually rhizinate on the lower surface, occasionally with holdfasts, rhizohyphae, or a hypothallus. Only a few genera have a naked lower surface (for example Usnea, Hypogymnia and Menegazzia). The upper surface has a pored or non-pored epicortex. Medulla is solid, but often loosely woven.[18]

Apothecia

Apothecia are lecanorine, produced along the lamina or margin, and sessile to pedicellate (or less often sunken). Thalline exciple is concolorous with the thallus. Asci are amyloid, and the vast majority of species have eight spores per ascus, though a few species are many-spored, and several Menegazzia species have two spores per ascus.[18]

Spores

Ascospores are simple, hyaline, and often small. Conidia generally arise laterally from the joints of conidiogenous hyphae (Parmelia-type), but arise terminally from these joints in a small number of species (Psora-type). The conidia can have a broad range of shapes: cylindrical to bacilliform, bifusiform, fusiform, sublageniform, unciform, filiform, or curved. Pycnidia are immersed or rarely emergent from the upper cortex, are produced along the lamina or margins, pyriform in shape, and dark-brown to black in colour.[18]

Chemistry

Members of the Parmeliaceae exhibit a diverse chemistry, with several types of lichenan (Xanthoparmelia-type, Cetraria-type, intermediate-type), isolichenan and/or other polysaccharides being known from the cell walls of many species.[18] The wide diversity in the types of chemical compounds includes depsides, depsidones, aliphatic acids, triterpenes, anthraquinones, secalonic acids, pulvinic acid derivatives, and xanthones. The compounds usnic acid and atranorin, which are found exclusively in the Parmeliaceae, are of great importance in the systematics of the family, and the presence or absence of these chemicals have been used in several instances to help define genera. Parmelia and Usnea are the best chemically characterized genera, while the species Cetraria islandica and Evernia prunastri have attracted considerable research attention for their bioactive compounds.[19]

A study of three parmelioid lichens (Bulbothrix setschwanensis, Hypotrachyna cirrhata, and Parmotrema reticulatum) collected from high-altitude areas of Garhwal Himalaya, showed considerable variation in the chemical content with the rising altitude. This suggests that there is a prominent role for secondary metabolites in the wider ecological distribution of Parmelioid lichens at higher altitudes.[20]

Photobiont

The main photobiont genus that associates with Parmeliaceae species is the chlorophyte Trebouxia. In particular, the species Trebouxia jamesii appears to be especially prominent. Some Parmeliaceae genera are also known to associate with Asterochloris,[4] but the frequency of this association is not yet known. In general, photobiont diversity within the Parmeliaceae is a little studied subject, and much is left to discover here.

Genera

These are the genera that are in the Parmeliaceae (including estimated number of species in each genus). Following the genus name is the taxonomic authority (those who first circumscribed the genus; standardised author abbreviations are used), year of publication, and the estimated number of species.

A genus Foveolaria Chesnokov, Prokopiev, Konoreva & Davydov was proposed in 2023 to contain the species historically known as Cetraria nivalis and transferred to several genera (including Allocetraria, Flavocetraria, and Nephromopsis),[30] but this naming proposal was not valid, as the name has already been used for a plant genus; its current taxonomic status is unclear.[43]

Conservation

Parmeliaceae species that have been assessed for the global IUCN Red List include the following: Anzia centrifuga (vulnerable, 2014);[44] Sulcaria badia (endangered, 2019);[45] Lethariella togashii (vulnerable, 2017);[46] Hypotrachyna virginica (critically endangered, 2020);[47] Sulcaria isidiifera (critically endangered, 2017);[48] Sulcaria spiralifera (endangered, 2020);[49] and Xanthoparmelia beccae (vulnerable, 2017).[50]

References

  1. ^ "Parmeliaceae". NCBI taxonomy. Bethesda, MD: National Center for Biotechnology Information. Retrieved 22 August 2018.
  2. ^ Lücking, Robert; Hodkinson, Brendan P.; Leavitt, Steven D. (2017). "The 2016 classification of lichenized fungi in the Ascomycota and Basidiomycota–Approaching one thousand genera". The Bryologist. 119 (4): 361–416. doi:10.1639/0007-2745-119.4.361.
  3. ^ Wijayawardene, Nalin; Hyde, Kevin; L.K.T., Al-Ani; S., Dolatabadi; Stadler, Marc; Haelewaters, Danny; et al. (2020). "Outline of Fungi and fungus-like taxa". Mycosphere. 11: 1060–1456. doi:10.5943/mycosphere/11/1/8. hdl:11336/151990.
  4. ^ a b Miadlikowska, J. et al. (2006). New insights into classification and evolution of the Lecanoromycetes (Pezizomycotina, Ascomycota) from phylogenetic analyses of three ribosomal RNA- and two protein-coding genes. Mycologia 98: 1088-1103. http://www.mycologia.org/cgi/reprint/98/6/1088.pdf
  5. ^ Cannon PF, Kirk PM (2007). Fungal Families of the World. Wallingford: CABI. p. 256. ISBN 978-0-85199-827-5.
  6. ^ Crespo Ana; Blanco, Oscar; Hawksworth, David L (2001). "The potential of mitochondrial DNA for establishing phylogeny and stabilising generic concepts in the parmelioid lichens". Taxon. 50 (3): 807–19. doi:10.2307/1223708. JSTOR 1223708.
  7. ^ a b Thell, Arne; Crespo, Ana; Divakar, Pradeep K.; Kärnefelt, Ingvar; Leavitt, Steven D.; Lumbsch, H. Thorsten; Seaward, Mark R. D. (2012). "A review of the lichen family Parmeliaceae – history, phylogeny and current taxonomy". Nordic Journal of Botany. 30 (6): 641–664. doi:10.1111/j.1756-1051.2012.00008.x.
  8. ^ Divakar, Pradeep K.; Crespo, Ana; Wedin, Mats; Leavitt, Steven D.; Hawksworth, David L.; Myllys, Leena; et al. (2015). "Evolution of complex symbiotic relationships in a morphologically derived family of lichen-forming fungi". New Phytologist. 208 (4): 1217–1226. doi:10.1111/nph.13553. hdl:10652/3753. PMID 26299211.
  9. ^ Divakar, Pradeep K.; Crespo, Ana; Kraichak, Ekaphan; Leavitt, Steven D.; Singh, Garima; Schmitt, Imke; Lumbsch, H. Thorsten (2017). "Using a temporal phylogenetic method to harmonize family- and genus-level classification in the largest clade of lichen-forming fungi". Fungal Diversity. 84 (1): 101–117. doi:10.1007/s13225-017-0379-z.
  10. ^ Kraichak, Ekaphan; Crespo, Ana; Divakar, Pradeep K.; Leavitt, Steven D.; Lumbsch, H. Thorsten (2017). "A temporal banding approach for consistent taxonomic ranking above the species level". Scientific Reports. 7 (1): 2297. Bibcode:2017NatSR...7.2297K. doi:10.1038/s41598-017-02477-7. PMC 5442095. PMID 28536470.
  11. ^ Pöggeler, Stefanie; Divakar, Pradeep K.; Kauff, Frank; Crespo, Ana; Leavitt, Steven D.; Lumbsch, H. Thorsten (2013). "Understanding phenotypical character evolution in parmelioid lichenized fungi (Parmeliaceae, Ascomycota)". PLOS ONE. 8 (11): e83115. Bibcode:2013PLoSO...883115D. doi:10.1371/journal.pone.0083115. PMC 3843734. PMID 24312438.
  12. ^ Singh, Garima; Dal Grande, Francesco; Schnitzler, Jan; Pfenninger, Markus; Schmitt, Imke (2018). "Different diversification histories in tropical and temperate lineages in the ascomycete subfamily Protoparmelioideae (Parmeliaceae)". MycoKeys (36): 1–19. doi:10.3897/mycokeys.36.22548. PMC 6037653. PMID 29997448.
  13. ^ a b Crespo, Ana; Kauff, Frank; Divakar, Pradeep K.; del Prado, Ruth; Pérez-Ortega, Sergio; de Paz, Guillermo Amo; et al. (2010). "Phylogenetic generic classification of parmelioid lichens (Parmeliaceae, Ascomycota) based on molecular, morphological and chemical evidence". Taxon. 59 (6): 1735–1753. doi:10.1002/tax.596008.
  14. ^ a b c d Crespo, Ana; Divakar, Pradeep K.; Hawksworth, David L. (2011). "Generic concepts in parmelioid lichens, and the phylogenetic value of characters used in their circumscription". The Lichenologist. 43 (6): 511–535. doi:10.1017/S0024282911000570.
  15. ^ Poinar, G.O.; Peterson, E.B.; Platt, J.L. (2000). "Fossil Parmelia in new World Amber". The Lichenologist. 32 (3): 263–269. Bibcode:2000ThLic..32..263P. doi:10.1006/lich.1999.0258.
  16. ^ Rikkinen, Jouko; Poinar, George O. (2002). "Fossilised Anzia (Lecanorales, lichen-forming Ascomycota) from European Tertiary amber". Mycological Research. 106 (8): 984–990. doi:10.1017/S0953756202005907.
  17. ^ DeSalle, Robert; Amo de Paz, Guillermo; Cubas, Paloma; Divakar, Pradeep K.; Lumbsch, H. Thorsten; Crespo, Ana (2011). "Origin and diversification of major clades in parmelioid lichens (Parmeliaceae, Ascomycota) during the Paleogene inferred by bayesian analysis". PLOS ONE. 6 (12): e28161. Bibcode:2011PLoSO...628161A. doi:10.1371/journal.pone.0028161. PMC 3234259. PMID 22174775.
  18. ^ a b c d Elix, J.A. (1994). Parmeliaceae. Flora of Australia – Volume 55. http://www.environment.gov.au/biodiversity/abrs/publications/flora-of-australia/vol55.html
  19. ^ Gómez-Serranillos, M. Pilar; Fernández-Moriano, Carlos; González-Burgos, Elena; Divakar, Pradeep Kumar; Crespo, Ana (2014). "Parmeliaceae family: phytochemistry, pharmacological potential and phylogenetic features". RSC Advances. 4 (103): 59017–59047. Bibcode:2014RSCAd...459017G. doi:10.1039/C4RA09104C.
  20. ^ Shukla, Vertika; Patel, D. K.; Bajpai, Rajesh; Semwal, Manoj; Upreti, D. K. (2015). "Ecological implication of variation in the secondary metabolites in Parmelioid lichens with respect to altitude". Environmental Science and Pollution Research. 23 (2): 1391–1397. doi:10.1007/s11356-015-5311-z. PMID 26370809.
  21. ^ Goward, T. (1985). "Ahtiana, a new lichen genus in the Parmeliaceae". Bryologist. 88 (4): 367–371. doi:10.2307/3242678. JSTOR 3242678.
  22. ^ Stizenberger, E. (1861). "Anzia, eine neue Flechtengattung". Flora (Regensburg) (in German). 44: 390–393.
  23. ^ a b Kärnefelt, I.; Mattsson, J.E.; Thell, A. (1993). "The lichen genera Arctocetraria, Cetraria, and Cetrariella (Parmeliaceae) and their presumed evolutionary affinities". The Bryologist. 96 (3): 394–404. doi:10.2307/3243869. JSTOR 3243869.
  24. ^ Hale, Mason E. (1986). "Arctoparmelia, a new lichen genus in the Parmeliaceae". Mycotaxon. 25 (1): 251–254.
  25. ^ Kärnefelt, Ingvar (1986). "The genera Bryocaulon, Coelocaulon and Cornicularia and formerly associated taxa". Opera Botanica. 86: 1–90.
  26. ^ a b c d Hale, Mason E. (1974). "Bulbothrix, Parmelina, Relicina and Xanthoparmelia, four new genera in the Parmeliaceae". Phytologia. 28 (5): 479–490.
  27. ^ Elix, J.A.; Johnston, J.; Vernon, D. (1986). "Canoparmelia, Paraparmelia and Relicinopsis. Three new genera in the Parmeliaceae (lichenized Ascomycotina)". Mycotaxon. 27: 271–282.
  28. ^ Kurokawa, S. (1980). "Cetrariopsis, a new genus in the Parmeliaceae, and its distribution". Memoirs of the National Science Museum Tokyo. 13: 139–142.
  29. ^ Brusse, F.A.; Kärnefelt, I. "The new southern hemisphere lichen genus Coelopogon (Lecanorales, Ascomycotina), with a new species from Southern Africa". Mycotaxon. 42: 35–41.
  30. ^ a b Chesnokov, Sergey V.; Davydov, Evgeny A.; Konoreva, Liudmila A.; Prokopiev, Ilya A.; Poryadina, Lena N.; Zheludeva, Elena V.; Shavarda, Alexey L. (2023). "The monotypic genus Flavocetraria and two new genera: Cladocetraria and Foveolaria, in the cetrarioid core". Plant Systematics and Evolution. 309 (4): e24. doi:10.1007/s00606-023-01862-2.
  31. ^ Acharius, E. (1803). Methodus qua Omnes Detectos Lichenes Secundum Organa Carpomorpha ad Genera, Species et Varietates Redigere atque Observationibus Illustrare Tentavit Erik Acharius (in Latin). Stockholm: F.D.D. Ulrich. p. 300.
  32. ^ Lendemer, James C.; Hodkinson, Brendan P. (2012). "Recognition of the Parmotrema crozalsiana group at the genus level with a discussion of the assignment of taxonomic rank based a priori on preconceived diagnostic characters". North American Fungi. 7 (2): 1–5. doi:10.2509/naf2012.007.002 (inactive 1 November 2024).{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  33. ^ Nylander, W. (1860). Synopsis Methodica Lichenum Omnium hucusque Cognitorum, Praemissa Introductione Lingua Gallica [A Systematic Synopsis of All Known Lichens, with a Prefatory Introduction in French] (in Latin). Vol. 1. Paris: L. Martinet. p. 286.
  34. ^ Aptroot, André (2007). "Davidgallowaya cornutispora, an enigmatic lichen from New Guinea". In Kärnefelt, Ingvar; Thell, Arne (eds.). Lichenological Contributions in Honour of David Galloway. Bibliotheca Lichenologica. Vol. 95. Berlin: J. Cramer. pp. 137–145. ISBN 978-3-443-58074-2.
  35. ^ Lai, M.J. (1980). "Studies on the cetrarioid lichens in Parmeliaceae of east Asia". Quarterly Journal of the Taiwan Museum. 33 (3–4): 215–229.
  36. ^ Hale, M.E. (1986). "Flavoparmelia, a new genus in the lichen family Parmeliaceae (Ascomycotina)". Mycotaxon. 25 (2): 603–605.
  37. ^ Nylander, W. (1896). Les Lichens des Environs de Paris [The Lichens of the Paris Region] (in French). Paris: Typographye Paul. Schmidt. pp. 39, 139.
  38. ^ Tulasne, L.-R. (1852). "Mémoire pour servir à l'histoire organographique et physiologique des Lichens" [Memoir on the organographic and physiological history of Lichens]. Annales des Sciences Naturelles Botanique. Série 3 (in Latin). 17: 124.
  39. ^ Petrak, F. (1931). "Fungi Adeani. Ein Beitrag zur Pilzflora Bayerns und der angrenzenden Länder" [Fungi Adeani: A contribution to the mycological flora of Bavaria and adjacent regions]. Kryptogamische Forschungen Kryptogamenkommission der Bayerischen Botanischen Gesellschaft zur Erforschung der heimischen Flora. II (in German) (2): 155–194.
  40. ^ Zopf, Wilhelm (1903). "Vergleichende Untersuchungen über Flechten in Bezug auf ihre Stoffwechselprodukte" [Comparative studies on lichens regarding their metabolic products]. Beihefte zum Botanischen Centralblatt (in German). 14: 95–126.
  41. ^ Krog, Hildur (1982). "Punctelia, a new lichen genus in the Parmeliaceae". Nordic Journal of Botany. 2 (3): 287–292. doi:10.1111/j.1756-1051.1982.tb01191.x.
  42. ^ Bystrek, J. (1971). "Taxonomic studies on the genus Alectoria". Annales Universitatis Mariae Curie-Sklodowska. 26: 265–279.
  43. ^ "Record Details: Foveolaria Chesnokov, Prokopiev, Konoreva & Davydov, in Chesnokov, Davydov, Konoreva, Prokopiev, Poryadina, Zheludeva & Shavarda, Pl. Syst. Evol. 309(no. 24): 14 (2023)". Index Fungorum. Retrieved 1 January 2025.
  44. ^ Aptroot, A.; Perez-Ortega, S.; Scheidegger, C. (2014). "Anzia centrifuga". IUCN Red List of Threatened Species. 2014. Retrieved 19 April 2021.
  45. ^ McMullin, T.; Allen, J.; Lendemer, J. (2019). "Sulcaria badia". IUCN Red List of Threatened Species. 2019. Retrieved 19 April 2021.
  46. ^ Ohmura, Y.; Randlane, T.; Spribille, T. (2017). "Lethariella togashii". IUCN Red List of Threatened Species. 2017. Retrieved 19 April 2021.
  47. ^ Allen, J.; Lendemer, J.; McMullin, T. (2020). "Hypotrachyna virginica". IUCN Red List of Threatened Species. 2020. Retrieved 19 April 2021.
  48. ^ McMullin, T.; Allen, J.; Lendemer, J. (2019). "Sulcaria isidiifera". IUCN Red List of Threatened Species. 2019. Retrieved 19 April 2021.
  49. ^ McMullin, T.; Stone, D.; Lendemer, J.; Allen, J. (2021). "Sulcaria spiralifera". IUCN Red List of Threatened Species. 2021. Retrieved 19 April 2021.
  50. ^ Aptroot, A.; Perez-Ortega, S. (2018). "Xanthoparmelia beccae". IUCN Red List of Threatened Species. 2018. Retrieved 21 June 2021.