Langbahn Team – Weltmeisterschaft

May 1994 lunar eclipse

May 1994 lunar eclipse
Partial eclipse
The Moon's hourly motion shown right to left
DateMay 25, 1994
Gamma0.8933
Magnitude0.2432
Saros cycle140 (24 of 80)
Partiality104 minutes, 36 seconds
Penumbral261 minutes, 12 seconds
Contacts (UTC)
P11:19:43
U12:37:59
Greatest3:30:20
U44:22:36
P45:40:55

A partial lunar eclipse occurred at the Moon’s ascending node of orbit on Wednesday, May 25, 1994,[1] with an umbral magnitude of 0.2432. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A partial lunar eclipse occurs when one part of the Moon is in the Earth's umbra, while the other part is in the Earth's penumbra. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. Occurring only about 23.5 hours after perigee (on May 24, 1994, at 3:55 UTC), the Moon's apparent diameter was larger.[2]

Visibility

The eclipse was completely visible over eastern North America, South America, west Africa, and Antarctica, seen rising over western North America and the eastern Pacific Ocean and setting over much of Africa, Europe, and the Middle East.[3]

Eclipse details

Shown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.[4]

May 25, 1994 Lunar Eclipse Parameters
Parameter Value
Penumbral Magnitude 1.19408
Umbral Magnitude 0.24318
Gamma 0.89334
Sun Right Ascension 04h06m48.5s
Sun Declination +20°53'35.0"
Sun Semi-Diameter 15'47.5"
Sun Equatorial Horizontal Parallax 08.7"
Moon Right Ascension 16h07m09.9s
Moon Declination -19°59'22.3"
Moon Semi-Diameter 16'36.4"
Moon Equatorial Horizontal Parallax 1°00'56.9"
ΔT 60.3 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of May 1994
May 10
Descending node (new moon)
May 25
Ascending node (full moon)
Annular solar eclipse
Solar Saros 128
Partial lunar eclipse
Lunar Saros 140

Eclipses in 1994

Metonic

Tzolkinex

Half-Saros

Tritos

Lunar Saros 140

Inex

Triad

Lunar eclipses of 1991–1994

This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[5]

The penumbral lunar eclipses on January 30, 1991 and July 26, 1991 occur in the previous lunar year eclipse set.

Lunar eclipse series sets from 1991 to 1994
Ascending node   Descending node
Saros Date
Viewing
Type
Chart
Gamma Saros Date
Viewing
Type
Chart
Gamma
110 1991 Jun 27
Penumbral
−1.4064 115 1991 Dec 21
Partial
0.9709
120 1992 Jun 15
Partial
−0.6289 125 1992 Dec 09
Total
0.3144
130 1993 Jun 04
Total
0.1638 135 1993 Nov 29
Total
−0.3994
140 1994 May 25
Partial
0.8933 145 1994 Nov 18
Penumbral
−1.1048

Saros 140

This eclipse is a part of Saros series 140, repeating every 18 years, 11 days, and containing 77 events. The series started with a penumbral lunar eclipse on September 25, 1597. It contains partial eclipses from May 3, 1958 through July 17, 2084; total eclipses from July 30, 2102 through May 21, 2589; and a second set of partial eclipses from June 2, 2607 through August 7, 2715. The series ends at member 77 as a penumbral eclipse on January 6, 2968.

The longest duration of totality will be produced by member 38 at 98 minutes, 36 seconds on November 4, 2264. All eclipses in this series occur at the Moon’s ascending node of orbit.[6]

Greatest First
The greatest eclipse of the series will occur on 2264 Nov 04, lasting 98 minutes, 36 seconds.[7] Penumbral Partial Total Central
1597 Sep 25
1958 May 03
2102 Jul 30
2156 Aug 30
Last
Central Total Partial Penumbral
2535 Apr 19
2589 May 21
2715 Aug 07
2968 Jan 06

Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
1808 Nov 03
(Saros 123)
1819 Oct 03
(Saros 124)
1830 Sep 02
(Saros 125)
1841 Aug 02
(Saros 126)
1852 Jul 01
(Saros 127)
1863 Jun 01
(Saros 128)
1874 May 01
(Saros 129)
1885 Mar 30
(Saros 130)
1896 Feb 28
(Saros 131)
1907 Jan 29
(Saros 132)
1917 Dec 28
(Saros 133)
1928 Nov 27
(Saros 134)
1939 Oct 28
(Saros 135)
1950 Sep 26
(Saros 136)
1961 Aug 26
(Saros 137)
1972 Jul 26
(Saros 138)
1983 Jun 25
(Saros 139)
1994 May 25
(Saros 140)
2005 Apr 24
(Saros 141)
2016 Mar 23
(Saros 142)
2027 Feb 20
(Saros 143)
2038 Jan 21
(Saros 144)
2048 Dec 20
(Saros 145)
2059 Nov 19
(Saros 146)
2070 Oct 19
(Saros 147)
2081 Sep 18
(Saros 148)
2092 Aug 17
(Saros 149)
2103 Jul 19
(Saros 150)
2114 Jun 18
(Saros 151)
2125 May 17
(Saros 152)
2136 Apr 16
(Saros 153)
2169 Jan 13
(Saros 156)
2190 Nov 12
(Saros 158)

Half-Saros cycle

A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[8] This lunar eclipse is related to two solar eclipses of Solar Saros 147.

May 19, 1985 May 31, 2003

See also

References

  1. ^ "May 24–25, 1994 Partial Lunar Eclipse". timeanddate. Retrieved 9 January 2025.
  2. ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 9 January 2025.
  3. ^ "Partial Lunar Eclipse of 1994 May 25" (PDF). NASA. Retrieved 9 January 2025.
  4. ^ "Partial Lunar Eclipse of 1994 May 25". EclipseWise.com. Retrieved 9 January 2025.
  5. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  6. ^ "NASA - Catalog of Lunar Eclipses of Saros 140". eclipse.gsfc.nasa.gov.
  7. ^ Listing of Eclipses of series 140
  8. ^ Mathematical Astronomy Morsels, Jean Meeus, p.110, Chapter 18, The half-saros