Langbahn Team – Weltmeisterschaft

Lutetium(III) chloride

Lutetium(III) chloride
Names
IUPAC name
Lutetium(III) chloride
Other names
Lutetium chloride, lutetium trichloride
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.030.205 Edit this at Wikidata
EC Number
  • 233-240-1
RTECS number
  • OK8400000
UNII
  • InChI=1S/3ClH.Lu/h3*1H;/q;;;+3/p-3 checkY
    Key: AEDROEGYZIARPU-UHFFFAOYSA-K checkY
  • InChI=1S/3ClH.Lu/h3*1H;/q;;;+3/p-3
    Key: AEDROEGYZIARPU-DFZHHIFOAO
  • Key: AEDROEGYZIARPU-UHFFFAOYSA-K
  • Cl[Lu](Cl)Cl
Properties
LuCl3
Molar mass 281.325 g/mol
Appearance colorless or white monoclinic crystals
Density 3.98 g/cm3
Melting point 925 °C (1,697 °F; 1,198 K)[3]
Boiling point sublimes above 750°C[1]
soluble[2]
Structure
Monoclinic, mS16
C2/m, No. 12
Pharmacology
License data
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Irritant
GHS labelling:[4][5]
GHS07: Exclamation mark
Warning
H315, H319, H335
P261, P264, P271, P280, P302+P352, P304+P340, P305+P351+P338, P312, P321, P332+P313, P337+P313, P362, P403+P233, P405, P501
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 0: Will not burn. E.g. waterInstability 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g. calciumSpecial hazards (white): no code
2
0
1
Related compounds
Other anions
Lutetium(III) oxide
Other cations
Ytterbium(III) chloride
Scandium(III) chloride
Yttrium(III) chloride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Lutetium(III) chloride or lutetium trichloride is the chemical compound composed of lutetium and chlorine with the formula LuCl3. It forms hygroscopic white monoclinic crystals[3] and also a hygroscopic hexahydrate LuCl3·6H2O.[6] Anhydrous lutetium(III) chloride has the YCl3 (AlCl3) layer structure with octahedral lutetium ions.[7]

Lutetium-177, a radioisotope that can be derived from lutetium(III) chloride, is used in targeted cancer therapies.[8] When lutetium-177 is attached to molecules that specifically target cancer cells, it can deliver localized radiation to destroy those cells while sparing surrounding healthy tissue.[9] This makes lutetium-177-based treatments especially valuable for cancers that are difficult to treat with traditional methods, such as neuroendocrine tumors and prostate cancer.[10] Additionally, lutetium(III) chloride is used in scintillators, materials that emit light when exposed to radiation.[11] These scintillators are crucial in detectors for gamma rays and other high-energy particles, used in both medical diagnostics and in scientific research.[12]

Reactions

Pure lutetium metal can be produced from lutetium(III) chloride by heating it together with elemental calcium:[13]

2 LuCl3 + 3 Ca → 2 Lu + 3 CaCl2

See also

References

  1. ^ "Chemistry: Periodic Table: Lutetium: compound data (lutetium (III) chloride)". WebElements. Retrieved 2024-09-06.
  2. ^ Perry, Dale L.; Phillips, Sidney L. (1995), Handbook of Inorganic Compounds, CRC Press, p. 232, ISBN 0-8493-8671-3, retrieved 2008-06-27
  3. ^ a b Lide, David R. (1998), Handbook of Chemistry and Physics (87 ed.), Boca Raton, Florida: CRC Press, p. 472, ISBN 0-8493-0594-2, retrieved 2008-06-27
  4. ^ "450960 Lutetium(III) chloride anhydrous, powder, 99.99% trace metals basis". Sigma-Aldrich. Retrieved 2008-06-27.
  5. ^ "Lutetium chloride". pubchem.ncbi.nlm.nih.gov.
  6. ^ "Lutetium(III) chloride hexahydrate 542075". Sigma-Aldrich. Retrieved 2019-07-24.
  7. ^ Wells A.F. (1984) Structural Inorganic Chemistry 5th edition Oxford Science Publications ISBN 0-19-855370-6
  8. ^ Sgouros, George; Bodei, Lisa; McDevitt, Michael R.; Nedrow, Jessie R. (September 2020). "Radiopharmaceutical therapy in cancer: clinical advances and challenges". Nature Reviews Drug Discovery. 19 (9): 589–608. doi:10.1038/s41573-020-0073-9. ISSN 1474-1784. PMC 7390460.
  9. ^ Vyas, Madhusudan (2021-05-01). "Lutetium-177: a flexible radionuclide therapeutic options". Journal of Nuclear Medicine. 62 (supplement 1): 3039–3039. ISSN 0161-5505.
  10. ^ Dash, Ashutosh; Pillai, Maroor Raghavan Ambikalmajan; Knapp, Furn F. (2015-06-01). "Production of 177Lu for Targeted Radionuclide Therapy: Available Options". Nuclear Medicine and Molecular Imaging. 49 (2): 85–107. doi:10.1007/s13139-014-0315-z. ISSN 1869-3482. PMC 4463871. PMID 26085854.
  11. ^ Vogel, W. V.; van der Marck, S. C.; Versleijen, M. W. J. (2021-07-01). "Challenges and future options for the production of lutetium-177". European Journal of Nuclear Medicine and Molecular Imaging. 48 (8): 2329–2335. doi:10.1007/s00259-021-05392-2. ISSN 1619-7089. PMC 8241800. PMID 33974091.
  12. ^ Das, Tapas; Banerjee, Sharmila (2016). "Theranostic Applications of Lutetium-177 in Radionuclide Therapy". Current Radiopharmaceuticals. 9 (1): 94–101. doi:10.2174/1874471008666150313114644. ISSN 1874-4729. PMID 25771364.
  13. ^ Patnaik, Pradyot (2004), Handbook of Inorganic Chemicals, Amsterdam: McGraw-Hill Professional, p. 244, ISBN 0-07-049439-8, retrieved 2008-06-27