DNA (cytosine-5)-methyltransferase 3-like is an enzyme that in humans is encoded by the DNMT3Lgene.[5][6]
Function
CpG methylation is an epigenetic modification that is important for embryonic development, imprinting, and X-chromosome inactivation. Studies in mice have demonstrated that DNA methylation is required for mammalian development. This gene encodes a nuclear protein with similarity to DNA methyltransferases. This protein is not thought to function as a DNA methyltransferase as it does not contain the amino acid residues necessary for methyltransferase activity. However, this protein does stimulate de novo methylation by DNA cytosine methyltransferase 3 alpha and it is thought to be required for the establishment of maternal genomic imprints. This protein also mediates transcriptional repression through interaction with histone deacetylase 1. Alternative splicing results in two transcript variants. An additional splice variant has been described but its biological validity has not been determined.[6]
^"Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
^"Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
^Aapola U, Kawasaki K, Scott HS, Ollila J, Vihinen M, Heino M, et al. (August 2000). "Isolation and initial characterization of a novel zinc finger gene, DNMT3L, on 21q22.3, related to the cytosine-5-methyltransferase 3 gene family". Genomics. 65 (3): 293–8. doi:10.1006/geno.2000.6168. PMID10857753.
Hata K, Okano M, Lei H, Li E (2002). "Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice". Development. 129 (8): 1983–93. doi:10.1242/dev.129.8.1983. PMID11934864.
Yokomine T, Hata K, Tsudzuki M, Sasaki H (2006). "Evolution of the vertebrate DNMT3 gene family: a possible link between existence of DNMT3L and genomic imprinting". Cytogenet. Genome Res. 113 (1–4): 75–80. doi:10.1159/000090817. PMID16575165. S2CID20182138.