Allotopy
In a story, an allotopy is when two basic meaning traits (semes) contradict each other; that is, when they trace two incompatible interpretations. It was conceived as being the opposite of an isotopy, which is the homogeneity resulting from repetition of the same seme.[1] The concept was coined in the 1970s by the Belgian semioticians known as Groupe μ.
History
In the 1970, the Belgian semioticians known under the name Groupe μ, introduced the concept of Allotopy.[2] They first discussed the concept in publications like Isotopie et allotopie,[3] Isotopie, allotopie et polytopie (1976),[4] and A Rhetoric of Poetry (1977).[5]
Allotopy and humor
Groupe μ discussed the relation of allotopy to jokes and humor.[citation needed] Salvatore Attardo, despite not using the term allotopy, formulated a theory of humor based on the idea of the "incompatible interpretations", called the isotopy-disjunction model.[6][7] This is part of the broader idea of defining humor as based on contradiction/incongruity.
See also
Notes
- ^ Jean-Marie Klinkenberg (1996) Précis de sémiotique générale, De Boeck, p. 118 [1] Archived 2011-07-13 at the Wayback Machine
- ^ "Définition de : l'allotopie". Archived from the original on 2010-03-12. Retrieved 2010-06-20.
- ^ DUBOIS J. ; EDELINE F. ; KLINKENBERG J.-M. ; MINGUET P. (1976) Isotopie et allotopie: le fonctionnement rhétorique du texte, no14, pp. 41-65 (2 p.)
- ^ Groupe μ (1976) Isotopie, allotopie et polytopie : le texte rhétorique, Versus, 14, 1 976
- ^ Groupe μ (1977)
- ^ Salvatore Attardo (2001) Humorous texts: a semantic and pragmatic analysis, sect.5.3.2, p.83
- ^ Salvatore Attardo (1994) Linguistic theories of humor, chap.2
- ^ The sign in Paris semiotics[permanent dead link ], Semiotica. Volume 111, Issue 1-2, Pages 1–34, ISSN (Online) 1613-3692, ISSN (Print) 0037-1998, doi:10.1515/semi.1996.111.1-2.1, //1996
References
- Groupe μ (1977) Rhétorique de la poésie: lecture linéaire, lecture tabulaire. Original summary in French
Further reading
- Klinkenberg et al. (2008) Figures de la figure: Sémiotique et rhétorique générale
- Serge Botet (2008) Petit traité de la métaphore: Un panorama des théories modernes de la métaphore
- François Rastier (1987) Sémantique interprétative, chapter VI Isotopies minimales, section 2 Isotopies génériques and section 4 Degres d'allotopie specifique
- Paul Delbouille, Françoise Tilkin Le lire et le délire: recueil offert à Paul Delbouille par ses collègues, pp. 223–45
External links
- Définition de : l'allotopie (in French)
- L'argumentation dans la figure (J.-M. Klinkenberg) (in French)