Eisspeedway

Przestrzeń Hewitta

Przestrzeń Hewitta (albo Q-przestrzeń; w literaturze anglojęzycznej realcompact space) – przestrzeń topologiczna, która jest homeomorficzna z podzbiorem domkniętym produktu kopii prostej rzeczywistej dla pewnej liczby kardynalnej Nazwa pojęcia pochodzi od nazwiska matematyka, Edwina Hewitta, który rozważał tego typu przestrzenie w swojej pracy z roku 1948[1].

Własności

Przestrzeń Tichonowa jest przestrzenią Hewitta wtedy i tylko wtedy, gdy nie istnieje taka przestrzeń Tichonowa że

  1. istnieje zanurzenie homeomorficzne takie, że
  2. dla każdego przekształcenia istnieje przekształcenie takie, że

Z definicji przestrzeni Hewitta wynikają następujące własności:

  • domknięty podzbiór przestrzeni Hewitta jest przestrzenią Hewitta,
  • produkt dowolnej rodziny przestrzeni Hewitta jest przestrzenią Hewitta,
  • granica odwrotna systemu odwrotnego przestrzeni Hewitta jest przestrzenią Hewitta,
  • przekrój rodziny podprzestrzeni będących przestrzeniami Hewitta, pewnej przestrzeni topologicznej jest przestrzenią Hewitta.

Inną charakteryzację tej klasy przestrzeni można podać w języku uzwarceń Čecha-Stone’a:

  • przestrzeń Tichonowa jest przestrzenią Hewitta wtedy i tylko wtedy, gdy dla każdego punktu istnieje funkcja taka, że oraz dla

Wnioskiem z tego twierdzenia jest następujący fakt:

Twierdzenie Hewitta

Istnieje charakteryzacja klasy przestrzeni Hewitta w języku dwuwartościowych miar Baire’a. Jest to tzw. twierdzenie Hewitta:

  • Przestrzeń Tichonowa jest przetrzenią Hewitta wtedy i tylko wtedy każda miara jest miarą Diraca,

gdzie oznacza rodzinę podzbiorów o własności Baire’a. Nie każda przestrzeń Tichonowa jest przestrzenią Hewitta – np. miara Dieudonnégo, określona na nie jest miarą Diraca. Ponadto, przestrzeń jest przestrzenią Hewitta wtedy i tylko wtedy, gdy jest liczbą niemierzalną.

Przypisy

  1. Hewitt E., Rings of real-valued continuous functions I, Transactions of the American Mathematical Society 64 (1948) s. 45–99.

Bibliografia