Prostopadłościan idealny
Prostopadłościan idealny – prostopadłościan, w którym długości wszystkich krawędzi, przekątnych ściennych i wewnętrznych są liczbami naturalnymi.
Każdy prostopadłościan można opisać liczbami oznaczającymi długości krawędzi. Jak wynika z twierdzenia Pitagorasa, aby prostopadłościan był idealny, muszą być spełnione następujące warunki:
- są liczbami naturalnymi;
- są liczbami naturalnymi;
- jest liczbą naturalną.
Obecnie nie jest znany żaden przykład prostopadłościanu idealnego i nie wiadomo, czy prostopadłościan o takich właściwościach w ogóle istnieje. Udowodniono, że w każdym prostopadłościanie idealnym najmniejsza spośród liczb musi być równa co najmniej 4 294 967 296[1].
Przypisy
- ↑ Ian Stewart: Gabinet matematycznych zagadek. Kraków: Wydawnictwo Literackie, 2011, s. 159. ISBN 978-83-08-04788-0.
Linki zewnętrzne
- Eric W. Weisstein , Perfect Cuboid, [w:] MathWorld, Wolfram Research (ang.). [dostęp 2022-07-02].