Timeline of computational physics
The following timeline starts with the invention of the modern computer in the late interwar period.
1930s
- John Vincent Atanasoff and Clifford Berry create the first electronic non-programmable, digital computing device, the Atanasoff–Berry Computer, that lasted from 1937 to 1942.
1940s
- Nuclear bomb and ballistics simulations at Los Alamos National Laboratory and Ballistic Research Laboratory (BRL), respectively.[1]
- Monte Carlo simulation (voted one of the top 10 algorithms of the 20th century by Jack Dongarra and Francis Sullivan in the 2000 issue of Computing in Science and Engineering)[2] is invented at Los Alamos National Laboratory by John von Neumann, Stanislaw Ulam and Nicholas Metropolis.[3][4][5]
- First hydrodynamic simulations performed at Los Alamos National Laboratory.[6][7]
- Ulam and von Neumann introduce the notion of cellular automata.[8][9]
1950s
- Equations of State Calculations by Fast Computing Machines introduces the Metropolis–Hastings algorithm.[10] Also, important earlier independent work by Berni Alder and Stan Frankel.[11][12]
- Enrico Fermi, Ulam and John Pasta with help from Mary Tsingou, discover the Fermi–Pasta–Ulam-Tsingou problem.[13]
- Research initiated into percolation theory.[14]
- Molecular dynamics is formulated by Alder and Tom E. Wainwright.[15]
1960s
- Using computational investigations of the 3-body problem, Michael Minovitch formulates the gravity assist method.[16][17]
- Glauber dynamics is invented for the Ising model by Roy J. Glauber.[18]
- Edward Lorenz discovers the butterfly effect on a computer, attracting interest in chaos theory.[19]
- Molecular dynamics is independently invented by Aneesur Rahman.[20]
- Walter Kohn instigates the development of density functional theory (with L.J. Sham and Pierre Hohenberg),[21][22] for which he shared the Nobel Chemistry Prize (1998).[23]
- Martin Kruskal and Norman Zabusky follow up the Fermi–Pasta–Ulam problem with further numerical experiments, and coin the term "soliton".[24][25]
- Kawasaki dynamics is invented for the Ising model.[26]
- Loup Verlet (re)discovers a numerical integration algorithm,[27] (first used in 1791 by Jean Baptiste Delambre, by P. H. Cowell and A. C. C. Crommelin in 1909, and by Carl Fredrik Störmer in 1907,[28] hence the alternative names Störmer's method or the Verlet-Störmer method) for dynamics, and the Verlet list.[27]
1970s
- Computer algebra replicates the work of Boris Delaunay in Lunar theory.[29][30][31][32][33]
- Martinus Veltman's calculations at CERN lead him and Gerard 't Hooft to valuable insights into renormalizability of electroweak theory.[34] The computation has been cited as a key reason for the award of the Nobel Physics Prize that has been given to both.[35]
- Jean Hardy, Yves Pomeau and Olivier de Pazzis introduce the first lattice gas model, abbreviated as the HPP model after its authors.[36][37] These later evolved into lattice Boltzmann models.
- Kenneth G. Wilson shows that continuum quantum chromodynamics (QCD) is recovered for an infinitely large lattice with its sites infinitesimally close to one another, thereby beginning lattice QCD.[38]
1980s
- Italian physicists Roberto Car and Michele Parrinello invent the Car–Parrinello method.[39]
- Swendsen–Wang algorithm is invented in the field of Monte Carlo simulations.[40]
- Fast multipole method is invented by Vladimir Rokhlin and Leslie Greengard (voted one of the top 10 algorithms of the 20th century).[41][42][43]
- Ullli Wolff invents the Wolff algorithm for statistical physics and Monte Carlo simulation.[44]
See also
- Timeline of scientific computing
- Computational physics
- Important publications in computational physics
References
- ^ Ballistic Research Laboratory, Aberdeen Proving Grounds, Maryland.
- ^ "MATH 6140 - Top ten algorithms from the 20th Century". www.math.cornell.edu.
- ^ Metropolis, N. (1987). "The Beginning of the Monte Carlo method" (PDF). Los Alamos Science. No. 15, Page 125.
{{cite journal}}
:|volume=
has extra text (help). Accessed 5 May 2012. - ^ S. Ulam, R. D. Richtmyer, and J. von Neumann(1947). Statistical methods in neutron diffusion. Los Alamos Scientific Laboratory report LAMS–551.
- ^ N. Metropolis and S. Ulam (1949). The Monte Carlo method. Journal of the American Statistical Association 44:335–341.
- ^ Richtmyer, R. D. (1948). Proposed Numerical Method for Calculation of Shocks. Los Alamos, NM: Los Alamos Scientific Laboratory LA-671.
- ^ A Method for the Numerical Calculation of Hydrodynamic Shocks. Von Neumann, J.; Richtmyer, R. D. Journal of Applied Physics, Vol. 21, pp. 232–237
- ^ Von Neumann, J., Theory of Self-Reproducing Automata, Univ. of Illinois Press, Urbana, 1966.
- ^ "Cellular Automaton".
- ^ Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. (1953). "Equations of State Calculations by Fast Computing Machines". Journal of Chemical Physics. 21 (6): 1087–1092. Bibcode:1953JChPh..21.1087M. doi:10.1063/1.1699114. OSTI 4390578. S2CID 1046577.
- ^ Unfortunately, Alder's thesis advisor was unimpressed, so Alder and Frankel delayed publication of their results until much later. Alder, B. J., Frankel, S. P., and Lewinson, B. A., J. Chem. Phys., 23, 3 (1955).
- ^ Reed, Mark M. "Stan Frankel". Hp9825.com. Retrieved 1 December 2017.
- ^ Fermi, E. (posthumously); Pasta, J.; Ulam, S. (1955) : Studies of Nonlinear Problems (accessed 25 Sep 2012). Los Alamos Laboratory Document LA-1940. Also appeared in 'Collected Works of Enrico Fermi', E. Segre ed., University of Chicago Press, Vol.II,978–988,1965. Recovered 21 December 2012
- ^ Broadbent, S. R.; Hammersley, J. M. (2008). "Percolation processes". Math. Proc. of the Camb. Philo. Soc.; 53 (3): 629.
- ^ Alder, B. J.; Wainwright, T. E. (1959). "Studies in Molecular Dynamics. I. General Method". Journal of Chemical Physics. 31 (2): 459. Bibcode:1959JChPh..31..459A. doi:10.1063/1.1730376.
- ^ Minovitch, Michael: "A method for determining interplanetary free-fall reconnaissance trajectories," Jet Propulsion Laboratory Technical Memo TM-312-130, pages 38-44 (23 August 1961).
- ^ Christopher Riley and Dallas Campbell, 22 October 2012. "The maths that made Voyager possible" Archived 30 July 2013 at the Wayback Machine. BBC News Science and Environment. Recovered 16 June 2013.
- ^ R. J. Glauber. "Time-dependent statistics of the Ising model, J. Math. Phys. 4 (1963), 294–307.
- ^ Lorenz, Edward N. (1963). "Deterministic Nonperiodic Flow" (PDF). Journal of the Atmospheric Sciences. 20 (2): 130–141. Bibcode:1963JAtS...20..130L. doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.
- ^ Rahman, A (1964). "Correlations in the Motion of Atoms in Liquid Argon". Phys Rev. 136 (2A): A405–A41. Bibcode:1964PhRv..136..405R. doi:10.1103/PhysRev.136.A405.
- ^ Kohn, Walter; Hohenberg, Pierre (1964). "Inhomogeneous Electron Gas". Physical Review. 136 (3B): B864–B871. Bibcode:1964PhRv..136..864H. doi:10.1103/PhysRev.136.B864.
- ^ Kohn, Walter; Sham, Lu Jeu (1965). "Self-Consistent Equations Including Exchange and Correlation Effects". Physical Review. 140 (4A): A1133–A1138. Bibcode:1965PhRv..140.1133K. doi:10.1103/PHYSREV.140.A1133.
- ^ "The Nobel Prize in Chemistry 1998". Nobelprize.org. Retrieved 6 October 2008.
- ^ Zabusky, N. J.; Kruskal, M. D. (1965). "Interaction of 'solitons' in a collisionless plasma and the recurrence of initial states". Phys. Rev. Lett. 15 (6): 240–243. Bibcode 1965PhRvL..15..240Z. doi:10.1103/PhysRevLett.15.240.
- ^ "Definition of SOLITON". Merriam-webster.com. Retrieved 1 December 2017.
- ^ K. Kawasaki, "Diffusion Constants near the Critical Point for Time-Dependent Ising Models. I. Phys. Rev. 145, 224 (1966)
- ^ a b Verlet, Loup (1967). "Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard−Jones Molecules". Physical Review. 159 (1): 98–103. Bibcode:1967PhRv..159...98V. doi:10.1103/PhysRev.159.98.
- ^ Press, WH; Teukolsky, SA; Vetterling, WT; Flannery, BP (2007). "Section 17.4. Second-Order Conservative Equations". Numerical Recipes: The Art of Scientific Computing (3rd ed.). New York: Cambridge University Press. ISBN 978-0-521-88068-8.
- ^ Brackx, F.; Constales, D. (30 November 1991). Computer Algebra with LISP and REDUCE: An Introduction to Computer-aided Pure Mathematics. Springer Science & Business Media. ISBN 9780792314417.
- ^ Contopoulos, George (16 June 2004). Order and Chaos in Dynamical Astronomy. Springer Science & Business Media. ISBN 9783540433606.
- ^ Jose Romildo Malaquias; Carlos Roberto Lopes. "Implementing a computer algebra system in Haskell" (PDF). Repositorio.ufop.br. Retrieved 1 December 2017.
- ^ "Computer Algebra" (PDF). Mosaicsciencemagazine.org. Retrieved 1 December 2017.
- ^ [1] [dead link ]
- ^ Frank Close. The Infinity Puzzle, pg 207. OUP, 2011.
- ^ Stefan Weinzierl:- "Computer Algebra in Particle Physics." pgs 5–7. arXiv:hep-ph/0209234. All links accessed 1 January 2012. "Seminario Nazionale di Fisica Teorica", Parma, September 2002.
- ^ J. Hardy, Y. Pomeau, and O. de Pazzis (1973). "Time evolution of two-dimensional model system I: invariant states and time correlation functions". Journal of Mathematical Physics, 14:1746–1759.
- ^ J. Hardy, O. de Pazzis, and Y. Pomeau (1976). "Molecular dynamics of a classical lattice gas: Transport properties and time correlation functions". Physical Review A, 13:1949–1961.
- ^ Wilson, K. (1974). "Confinement of quarks". Physical Review D. 10 (8): 2445. Bibcode:1974PhRvD..10.2445W. doi:10.1103/PhysRevD.10.2445.
- ^ Car, R.; Parrinello, M (1985). "Unified Approach for Molecular Dynamics and Density-Functional Theory". Physical Review Letters. 55 (22): 2471–2474. Bibcode:1985PhRvL..55.2471C. doi:10.1103/PhysRevLett.55.2471. PMID 10032153.
- ^ Swendsen, R. H., and Wang, J.-S. (1987), Nonuniversal critical dynamics in Monte Carlo simulations, Phys. Rev. Lett., 58(2):86–88.
- ^ L. Greengard, The Rapid Evaluation of Potential Fields in Particle Systems, MIT, Cambridge, (1987).
- ^ Rokhlin, Vladimir (1985). "Rapid Solution of Integral Equations of Classic Potential Theory." J. Computational Physics Vol. 60, pp. 187–207.
- ^ L. Greengard and V. Rokhlin, "A fast algorithm for particle simulations," J. Comput. Phys., 73 (1987), no. 2, pp. 325–348.
- ^ Wolff, Ulli (1989), "Collective Monte Carlo Updating for Spin Systems", Physical Review Letters, 62 (4): 361