Eisspeedway

Solar eclipse of November 1, 1929

Solar eclipse of November 1, 1929
Map
Type of eclipse
NatureAnnular
Gamma0.3514
Magnitude0.9649
Maximum eclipse
Duration234 s (3 min 54 s)
Coordinates4°30′N 3°06′E / 4.5°N 3.1°E / 4.5; 3.1
Max. width of band134 km (83 mi)
Times (UTC)
Greatest eclipse12:05:10
References
Saros132 (41 of 71)
Catalog # (SE5000)9350

An annular solar eclipse occurred at the Moon's descending node of orbit on Friday, November 1, 1929,[1] with a magnitude of 0.9649. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 6 days before apogee (on November 7, 1929, at 11:00 UTC), the Moon's apparent diameter was smaller.[2]

Annularity was visible from Spanish Sahara (today's West Sahara), French West Africa (parts now belonging to Mauritania, Mali, Burkina Faso, and southwestern tip of Benin), British Gold Coast (today's Ghana), French Togoland (today's Togo) including capital Lomé, Portuguese São Tomé and Príncipe (today's São Tomé and Príncipe), French Equatorial Africa (parts now belonging to Gabon and R. Congo) including capital Brazzaville, Belgian Congo (today's DR Congo) including capital Léopoldville, Northern Rhodesia (today's Zambia), British Tanganyika (now belonging to Tanzania) including capital Dar es Salaam, and British Seychelles (today's Seychelles) including capital Victoria. A partial eclipse was visible for most of Africa, Europe, and the Middle East.

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[3]

November 1, 1929 Solar Eclipse Times
Event Time (UTC)
First Penumbral External Contact 1929 November 01 at 09:12:50.4 UTC
First Umbral External Contact 1929 November 01 at 10:17:25.7 UTC
First Central Line 1929 November 01 at 10:19:08.2 UTC
First Umbral Internal Contact 1929 November 01 at 10:20:50.9 UTC
First Penumbral Internal Contact 1929 November 01 at 11:35:47.0 UTC
Equatorial Conjunction 1929 November 01 at 11:47:03.1 UTC
Ecliptic Conjunction 1929 November 01 at 12:01:11.0 UTC
Greatest Eclipse 1929 November 01 at 12:05:09.8 UTC
Last Penumbral Internal Contact 1929 November 01 at 12:34:57.3 UTC
Greatest Duration 1929 November 01 at 12:41:12.0 UTC
Last Umbral Internal Contact 1929 November 01 at 13:49:37.9 UTC
Last Central Line 1929 November 01 at 13:51:23.5 UTC
Last Umbral External Contact 1929 November 01 at 13:53:08.8 UTC
Last Penumbral External Contact 1929 November 01 at 14:57:43.0 UTC
November 1, 1929 Solar Eclipse Parameters
Parameter Value
Eclipse Magnitude 0.96489
Eclipse Obscuration 0.93100
Gamma 0.35138
Sun Right Ascension 14h24m49.9s
Sun Declination -14°22'20.5"
Sun Semi-Diameter 16'07.1"
Sun Equatorial Horizontal Parallax 08.9"
Moon Right Ascension 14h25m23.5s
Moon Declination -14°04'23.5"
Moon Semi-Diameter 15'19.6"
Moon Equatorial Horizontal Parallax 0°56'14.9"
ΔT 24.0 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of November 1929
November 1
Descending node (new moon)
November 17
Ascending node (full moon)
Annular solar eclipse
Solar Saros 132
Penumbral lunar eclipse
Lunar Saros 144

Eclipses in 1929

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 132

Inex

Triad

Solar eclipses of 1928–1931

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[4]

The partial solar eclipse on June 17, 1928 occurs in the previous lunar year eclipse set, and the partial solar eclipse on September 12, 1931 occurs in the next lunar year eclipse set.

Solar eclipse series sets from 1928 to 1931
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
117 May 19, 1928

Total (non-central)
1.0048 122 November 12, 1928

Partial
1.0861
127 May 9, 1929

Total
−0.2887 132 November 1, 1929

Annular
0.3514
137 April 28, 1930

Hybrid
0.473 142 October 21, 1930

Total
−0.3804
147 April 18, 1931

Partial
1.2643 152 October 11, 1931

Partial
−1.0607

Saros 132

This eclipse is a part of Saros series 132, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on August 13, 1208. It contains annular eclipses from March 17, 1569 through March 12, 2146; hybrid eclipses on March 23, 2164 and April 3, 2182; and total eclipses from April 14, 2200 through June 19, 2308. The series ends at member 71 as a partial eclipse on September 25, 2470. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity was produced by member 25 at 6 minutes, 56 seconds on May 9, 1641, and the longest duration of totality will be produced by member 61 at 2 minutes, 14 seconds on June 8, 2290. All eclipses in this series occur at the Moon’s descending node of orbit.[5]

Series members 34–56 occur between 1801 and 2200:
34 35 36

August 17, 1803

August 27, 1821

September 7, 1839
37 38 39

September 18, 1857

September 29, 1875

October 9, 1893
40 41 42

October 22, 1911

November 1, 1929

November 12, 1947
43 44 45

November 23, 1965

December 4, 1983

December 14, 2001
46 47 48

December 26, 2019

January 5, 2038

January 16, 2056
49 50 51

January 27, 2074

February 7, 2092

February 18, 2110
52 53 54

March 1, 2128

March 12, 2146

March 23, 2164
55 56

April 3, 2182

April 14, 2200

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between March 27, 1884 and August 20, 1971
March 27–29 January 14 November 1–2 August 20–21 June 8
108 110 112 114 116

March 27, 1884

August 20, 1895

June 8, 1899
118 120 122 124 126

March 29, 1903

January 14, 1907

November 2, 1910

August 21, 1914

June 8, 1918
128 130 132 134 136

March 28, 1922

January 14, 1926

November 1, 1929

August 21, 1933

June 8, 1937
138 140 142 144 146

March 27, 1941

January 14, 1945

November 1, 1948

August 20, 1952

June 8, 1956
148 150 152 154

March 27, 1960

January 14, 1964

November 2, 1967

August 20, 1971

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200

October 9, 1809
(Saros 121)

September 7, 1820
(Saros 122)

August 7, 1831
(Saros 123)

July 8, 1842
(Saros 124)

June 6, 1853
(Saros 125)

May 6, 1864
(Saros 126)

April 6, 1875
(Saros 127)

March 5, 1886
(Saros 128)

February 1, 1897
(Saros 129)

January 3, 1908
(Saros 130)

December 3, 1918
(Saros 131)

November 1, 1929
(Saros 132)

October 1, 1940
(Saros 133)

September 1, 1951
(Saros 134)

July 31, 1962
(Saros 135)

June 30, 1973
(Saros 136)

May 30, 1984
(Saros 137)

April 29, 1995
(Saros 138)

March 29, 2006
(Saros 139)

February 26, 2017
(Saros 140)

January 26, 2028
(Saros 141)

December 26, 2038
(Saros 142)

November 25, 2049
(Saros 143)

October 24, 2060
(Saros 144)

September 23, 2071
(Saros 145)

August 24, 2082
(Saros 146)

July 23, 2093
(Saros 147)

June 22, 2104
(Saros 148)

May 24, 2115
(Saros 149)

April 22, 2126
(Saros 150)

March 21, 2137
(Saros 151)

February 19, 2148
(Saros 152)

January 19, 2159
(Saros 153)

December 18, 2169
(Saros 154)

November 17, 2180
(Saros 155)

October 18, 2191
(Saros 156)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200

January 21, 1814
(Saros 128)

December 31, 1842
(Saros 129)

December 12, 1871
(Saros 130)

November 22, 1900
(Saros 131)

November 1, 1929
(Saros 132)

October 12, 1958
(Saros 133)

September 23, 1987
(Saros 134)

September 1, 2016
(Saros 135)

August 12, 2045
(Saros 136)

July 24, 2074
(Saros 137)

July 4, 2103
(Saros 138)

June 13, 2132
(Saros 139)

May 25, 2161
(Saros 140)

May 4, 2190
(Saros 141)

Notes

  1. ^ "November 1, 1929 Annular Solar Eclipse". timeanddate. Retrieved 3 August 2024.
  2. ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 3 August 2024.
  3. ^ "Annular Solar Eclipse of 1929 Nov 01". EclipseWise.com. Retrieved 3 August 2024.
  4. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  5. ^ "NASA - Catalog of Solar Eclipses of Saros 132". eclipse.gsfc.nasa.gov.

References