Eisspeedway

September 1951 lunar eclipse

September 1951 lunar eclipse
Penumbral eclipse
The Moon's hourly motion shown right to left
DateSeptember 15, 1951
Gamma1.1187
Magnitude−0.1927
Saros cycle146 (7 of 72)
Penumbral234 minutes, 36 seconds
Contacts (UTC)
P110:29:16
Greatest12:26:37
P414:23:52

A penumbral lunar eclipse occurred at the Moon’s ascending node of orbit on Saturday, September 15, 1951,[1] with an umbral magnitude of −0.1927. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A penumbral lunar eclipse occurs when part or all of the Moon's near side passes into the Earth's penumbra. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. Occurring about 3.6 days after perigee (on September 11, 1951, at 21:30 UTC), the Moon's apparent diameter was larger.[2]

This eclipse was the last of four penumbral lunar eclipses in 1951, with the others occurring on February 21, March 23, and August 17.

Visibility

The eclipse was completely visible over east and northeast Asia, Australia, and northwestern North America, seen rising over central and south Asia and setting over much of North America and western South America.[3]

Eclipse details

Shown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.[4]

September 15, 1951 Lunar Eclipse Parameters
Parameter Value
Penumbral Magnitude 0.80351
Umbral Magnitude −0.19267
Gamma 1.11865
Sun Right Ascension 11h30m04.6s
Sun Declination +03°13'56.1"
Sun Semi-Diameter 15'54.4"
Sun Equatorial Horizontal Parallax 08.7"
Moon Right Ascension 23h27m58.3s
Moon Declination -02°16'28.5"
Moon Semi-Diameter 15'58.0"
Moon Equatorial Horizontal Parallax 0°58'36.0"
ΔT 29.8 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.

Eclipse season of August–September 1951
August 17
Ascending node (full moon)
September 1
Descending node (new moon)
September 15
Ascending node (full moon)
Penumbral lunar eclipse
Lunar Saros 108
Annular solar eclipse
Solar Saros 134
Penumbral lunar eclipse
Lunar Saros 146

Eclipses in 1951

Metonic

Tzolkinex

Half-Saros

Tritos

Lunar Saros 146

Inex

Triad

Lunar eclipses of 1948–1951

This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[5]

The penumbral lunar eclipses on February 21, 1951 and August 17, 1951 occur in the next lunar year eclipse set.

Lunar eclipse series sets from 1948 to 1951
Descending node   Ascending node
Saros Date
Viewing
Type
Chart
Gamma Saros Date
Viewing
Type
Chart
Gamma
111 1948 Apr 23
Partial
1.0017 116 1948 Oct 18
Penumbral
−1.0245
121 1949 Apr 13
Total
0.2474 126 1949 Oct 07
Total
−0.3219
131 1950 Apr 02
Total
−0.4599 136 1950 Sep 26
Total
0.4101
141 1951 Mar 23
Penumbral
−1.2099 146 1951 Sep 15
Penumbral
1.1187

Saros 146

This eclipse is a part of Saros series 146, repeating every 18 years, 11 days, and containing 72 events. The series started with a penumbral lunar eclipse on July 11, 1843. It contains partial eclipses from October 17, 2005 through May 14, 2348; total eclipses from May 25, 2366 through November 16, 2654; and a second set of partial eclipses from November 27, 2672 through June 12, 2997. The series ends at member 72 as a penumbral eclipse on August 29, 3123.

The longest duration of totality will be produced by member 37 at 99 minutes, 22 seconds on August 8, 2492. All eclipses in this series occur at the Moon’s ascending node of orbit.[6]

Greatest First
The greatest eclipse of the series will occur on 2492 Aug 08, lasting 99 minutes, 22 seconds.[7] Penumbral Partial Total Central
1843 Jul 11
2005 Oct 17
2366 May 25
2438 Jul 07
Last
Central Total Partial Penumbral
2546 Sep 11
2654 Nov 16
2997 Jun 12
3123 Aug 29

Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2060
1809 Oct 23
(Saros 133)
1820 Sep 22
(Saros 134)
1831 Aug 23
(Saros 135)
1842 Jul 22
(Saros 136)
1853 Jun 21
(Saros 137)
1864 May 21
(Saros 138)
1875 Apr 20
(Saros 139)
1886 Mar 20
(Saros 140)
1897 Feb 17
(Saros 141)
1908 Jan 18
(Saros 142)
1918 Dec 17
(Saros 143)
1929 Nov 17
(Saros 144)
1940 Oct 16
(Saros 145)
1951 Sep 15
(Saros 146)
1962 Aug 15
(Saros 147)
1973 Jul 15
(Saros 148)
1984 Jun 13
(Saros 149)
2060 Nov 08
(Saros 156)

Half-Saros cycle

A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[8] This lunar eclipse is related to two total solar eclipses of Solar Saros 153.

September 10, 1942 September 20, 1960

See also

Notes

  1. ^ "September 15, 1951 Penumbral Lunar Eclipse". timeanddate. Retrieved 21 December 2024.
  2. ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 21 December 2024.
  3. ^ "Penumbral Lunar Eclipse of 1951 Sep 15" (PDF). NASA. Retrieved 21 December 2024.
  4. ^ "Penumbral Lunar Eclipse of 1951 Sep 15". EclipseWise.com. Retrieved 21 December 2024.
  5. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  6. ^ "NASA - Catalog of Lunar Eclipses of Saros 146". eclipse.gsfc.nasa.gov.
  7. ^ Listing of Eclipses of series 146
  8. ^ Mathematical Astronomy Morsels, Jean Meeus, p.110, Chapter 18, The half-saros