Eisspeedway

KCNC2

KCNC2
Identifiers
AliasesKCNC2, KV3.2, potassium voltage-gated channel subfamily C member 2
External IDsOMIM: 176256; MGI: 96668; HomoloGene: 71199; GeneCards: KCNC2; OMA:KCNC2 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001025581
NM_001359752
NM_001359753
NM_001379643
NM_001379644

RefSeq (protein)

NP_001020752
NP_001346681
NP_001346682
NP_001366572
NP_001366573

Location (UCSC)Chr 12: 75.04 – 75.21 MbChr 10: 112.11 – 112.3 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Potassium voltage-gated channel subfamily C member 2 is a protein that in humans is encoded by the KCNC2 gene.[5][6] The protein encoded by this gene is a voltage-gated potassium channel subunit (Kv3.2).[7]

Expression pattern

Kv3.1 and Kv3.2 channels are prominently expressed in neurons that fire at high frequency. Kv3.2 channels are prominently expressed in brain (fast-spiking GABAergic interneurons of the neocortex, hippocampus, and caudate nucleus; terminal fields of thalamocortical projections), and in retinal ganglion cells.[8][9][7]

Physiological role

Kv3.1/Kv3.2 conductance is necessary and kinetically optimized for high-frequency action potential generation.[9][10] Sometimes in heteromeric complexes with Kv3.1; important for the high-frequency firing of fast spiking GABAergic interneurons and retinal ganglion cells; and GABA release via regulation of action potential duration in presynaptic terminals.[7][8]

Pharmacological properties

Kv3.2 currents in heterologous systems are highly sensitive to external tetraethylammonium (TEA) or 4-aminopyridine (4-AP) (IC50 values are 0.1 mM for both of the drugs).[7][9] This can be useful in identifying native channels.[9]

Transcript variants

There are four transcript variants of Kv3.2 gene: Kv3.2a, Kv3.2b, Kv3.2c, Kv3.2d. Kv3.2 isoforms differ only in their C-terminal sequence.[11]

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000166006Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000035681Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Haas M, Ward DC, Lee J, Roses AD, Clarke V, D'Eustachio P, Lau D, Vega-Saenz de Miera E, Rudy B (Mar 1994). "Localization of Shaw-related K+ channel genes on mouse and human chromosomes". Mamm Genome. 4 (12): 711–5. doi:10.1007/BF00357794. PMID 8111118. S2CID 24121259.
  6. ^ Gutman GA, Chandy KG, Grissmer S, Lazdunski M, McKinnon D, Pardo LA, Robertson GA, Rudy B, Sanguinetti MC, Stuhmer W, Wang X (Dec 2005). "International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels". Pharmacol Rev. 57 (4): 473–508. doi:10.1124/pr.57.4.10. PMID 16382104. S2CID 219195192.
  7. ^ a b c d Gutman GA, Chandy KG, Grissmer S, Lazdunski M, McKinnon D, Pardo LA, Robertson GA, Rudy B, Sanguinetti MC, Stühmer W, Wang X (December 2005). "International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels". Pharmacol. Rev. 57 (4): 473–508. doi:10.1124/pr.57.4.10. PMID 16382104. S2CID 219195192.
  8. ^ a b Kolodin YO (2008-04-27). "Ionic conductances underlying excitability in tonically firing retinal ganglion cells of adult rat". Retrieved 2008-10-20.
  9. ^ a b c d Rudy B, McBain CJ (September 2001). "Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing". Trends in Neurosciences. 24 (9): 517–26. doi:10.1016/S0166-2236(00)01892-0. PMID 11506885. S2CID 36100588.
  10. ^ Lien CC, Jonas P (March 2003). "Kv3 potassium conductance is necessary and kinetically optimized for high-frequency action potential generation in hippocampal interneurons". Journal of Neuroscience. 23 (6): 2058–68. doi:10.1523/JNEUROSCI.23-06-02058.2003. PMC 6742035. PMID 12657664.
  11. ^ Rudy B, Chow A, Lau D, Amarillo Y, Ozaita A, Saganich M, Moreno H, Nadal MS, Hernandez-Pineda R, Hernandez-Cruz A, Erisir A, Leonard C, Vega-Saenz de Miera E (April 1999). "Contributions of Kv3 channels to neuronal excitability". Annals of the New York Academy of Sciences. 868 (1 MOLECULAR AND): 304–43. Bibcode:1999NYASA.868..304R. doi:10.1111/j.1749-6632.1999.tb11295.x. PMID 10414303. S2CID 25289187.